3.357 \(\int \frac {e^{\tanh ^{-1}(a x)} x^2}{(c-a c x)^4} \, dx\)

Optimal. Leaf size=97 \[ \frac {23 \left (1-a^2 x^2\right )^{3/2}}{105 a^3 c^4 (1-a x)^3}-\frac {12 \left (1-a^2 x^2\right )^{3/2}}{35 a^3 c^4 (1-a x)^4}+\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a^3 c^4 (1-a x)^5} \]

[Out]

1/7*(-a^2*x^2+1)^(3/2)/a^3/c^4/(-a*x+1)^5-12/35*(-a^2*x^2+1)^(3/2)/a^3/c^4/(-a*x+1)^4+23/105*(-a^2*x^2+1)^(3/2
)/a^3/c^4/(-a*x+1)^3

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {6128, 1639, 793, 659, 651} \[ \frac {23 \left (1-a^2 x^2\right )^{3/2}}{105 a^3 c^4 (1-a x)^3}-\frac {12 \left (1-a^2 x^2\right )^{3/2}}{35 a^3 c^4 (1-a x)^4}+\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a^3 c^4 (1-a x)^5} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*x^2)/(c - a*c*x)^4,x]

[Out]

(1 - a^2*x^2)^(3/2)/(7*a^3*c^4*(1 - a*x)^5) - (12*(1 - a^2*x^2)^(3/2))/(35*a^3*c^4*(1 - a*x)^4) + (23*(1 - a^2
*x^2)^(3/2))/(105*a^3*c^4*(1 - a*x)^3)

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 659

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*c*d*(m + p + 1)), x] + Dist[Simplify[m + 2*p + 2]/(2*d*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p,
 x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2
], 0]

Rule 793

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d*g - e*f)*(
d + e*x)^m*(a + c*x^2)^(p + 1))/(2*c*d*(m + p + 1)), x] + Dist[(m*(g*c*d + c*e*f) + 2*e*c*f*(p + 1))/(e*(2*c*d
)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2
 + a*e^2, 0] && ((LtQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) &&
NeQ[m + p + 1, 0]

Rule 1639

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + c*x^2)^(p + 1))/(c*e^(q - 1)*(m + q + 2*p + 1)), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - 2*e*f*(m + p + q)*(d + e*x)^(q - 2)*(a*e - c*d*x), x], x], x] /; NeQ[m + q +
 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(a x)} x^2}{(c-a c x)^4} \, dx &=c \int \frac {x^2 \sqrt {1-a^2 x^2}}{(c-a c x)^5} \, dx\\ &=-\frac {\left (1-a^2 x^2\right )^{3/2}}{a^3 c^4 (1-a x)^4}+\frac {\int \frac {\left (4 a^2 c^2-3 a^3 c^2 x\right ) \sqrt {1-a^2 x^2}}{(c-a c x)^5} \, dx}{a^4 c}\\ &=\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a^3 c^4 (1-a x)^5}-\frac {\left (1-a^2 x^2\right )^{3/2}}{a^3 c^4 (1-a x)^4}+\frac {23 \int \frac {\sqrt {1-a^2 x^2}}{(c-a c x)^4} \, dx}{7 a^2}\\ &=\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a^3 c^4 (1-a x)^5}-\frac {12 \left (1-a^2 x^2\right )^{3/2}}{35 a^3 c^4 (1-a x)^4}+\frac {23 \int \frac {\sqrt {1-a^2 x^2}}{(c-a c x)^3} \, dx}{35 a^2 c}\\ &=\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a^3 c^4 (1-a x)^5}-\frac {12 \left (1-a^2 x^2\right )^{3/2}}{35 a^3 c^4 (1-a x)^4}+\frac {23 \left (1-a^2 x^2\right )^{3/2}}{105 a^3 c^4 (1-a x)^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 43, normalized size = 0.44 \[ -\frac {(a x+1)^{3/2} \left (-23 a^2 x^2+10 a x-2\right )}{105 a^3 c^4 (1-a x)^{7/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^ArcTanh[a*x]*x^2)/(c - a*c*x)^4,x]

[Out]

-1/105*((1 + a*x)^(3/2)*(-2 + 10*a*x - 23*a^2*x^2))/(a^3*c^4*(1 - a*x)^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 118, normalized size = 1.22 \[ \frac {2 \, a^{4} x^{4} - 8 \, a^{3} x^{3} + 12 \, a^{2} x^{2} - 8 \, a x + {\left (23 \, a^{3} x^{3} + 13 \, a^{2} x^{2} - 8 \, a x + 2\right )} \sqrt {-a^{2} x^{2} + 1} + 2}{105 \, {\left (a^{7} c^{4} x^{4} - 4 \, a^{6} c^{4} x^{3} + 6 \, a^{5} c^{4} x^{2} - 4 \, a^{4} c^{4} x + a^{3} c^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a*c*x+c)^4,x, algorithm="fricas")

[Out]

1/105*(2*a^4*x^4 - 8*a^3*x^3 + 12*a^2*x^2 - 8*a*x + (23*a^3*x^3 + 13*a^2*x^2 - 8*a*x + 2)*sqrt(-a^2*x^2 + 1) +
 2)/(a^7*c^4*x^4 - 4*a^6*c^4*x^3 + 6*a^5*c^4*x^2 - 4*a^4*c^4*x + a^3*c^4)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a*c*x+c)^4,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.03, size = 49, normalized size = 0.51 \[ -\frac {\left (23 a^{2} x^{2}-10 a x +2\right ) \left (a x +1\right )^{2}}{105 \left (a x -1\right )^{3} c^{4} \sqrt {-a^{2} x^{2}+1}\, a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a*c*x+c)^4,x)

[Out]

-1/105*(23*a^2*x^2-10*a*x+2)*(a*x+1)^2/(a*x-1)^3/c^4/(-a^2*x^2+1)^(1/2)/a^3

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 197, normalized size = 2.03 \[ \frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{7 \, {\left (a^{7} c^{4} x^{4} - 4 \, a^{6} c^{4} x^{3} + 6 \, a^{5} c^{4} x^{2} - 4 \, a^{4} c^{4} x + a^{3} c^{4}\right )}} + \frac {29 \, \sqrt {-a^{2} x^{2} + 1}}{35 \, {\left (a^{6} c^{4} x^{3} - 3 \, a^{5} c^{4} x^{2} + 3 \, a^{4} c^{4} x - a^{3} c^{4}\right )}} + \frac {82 \, \sqrt {-a^{2} x^{2} + 1}}{105 \, {\left (a^{5} c^{4} x^{2} - 2 \, a^{4} c^{4} x + a^{3} c^{4}\right )}} + \frac {23 \, \sqrt {-a^{2} x^{2} + 1}}{105 \, {\left (a^{4} c^{4} x - a^{3} c^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a*c*x+c)^4,x, algorithm="maxima")

[Out]

2/7*sqrt(-a^2*x^2 + 1)/(a^7*c^4*x^4 - 4*a^6*c^4*x^3 + 6*a^5*c^4*x^2 - 4*a^4*c^4*x + a^3*c^4) + 29/35*sqrt(-a^2
*x^2 + 1)/(a^6*c^4*x^3 - 3*a^5*c^4*x^2 + 3*a^4*c^4*x - a^3*c^4) + 82/105*sqrt(-a^2*x^2 + 1)/(a^5*c^4*x^2 - 2*a
^4*c^4*x + a^3*c^4) + 23/105*sqrt(-a^2*x^2 + 1)/(a^4*c^4*x - a^3*c^4)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 347, normalized size = 3.58 \[ \frac {2\,\sqrt {1-a^2\,x^2}}{7\,\left (a^7\,c^4\,x^4-4\,a^6\,c^4\,x^3+6\,a^5\,c^4\,x^2-4\,a^4\,c^4\,x+a^3\,c^4\right )}+\frac {4\,\sqrt {1-a^2\,x^2}}{3\,\left (a^5\,c^4\,x^2-2\,a^4\,c^4\,x+a^3\,c^4\right )}+\frac {4\,a\,\sqrt {1-a^2\,x^2}}{35\,\left (a^6\,c^4\,x^2-2\,a^5\,c^4\,x+a^4\,c^4\right )}+\frac {23\,\sqrt {1-a^2\,x^2}}{105\,\left (a\,c^4\,\sqrt {-a^2}-a^2\,c^4\,x\,\sqrt {-a^2}\right )\,\sqrt {-a^2}}-\frac {2\,a^2\,\sqrt {1-a^2\,x^2}}{3\,\left (a^7\,c^4\,x^2-2\,a^6\,c^4\,x+a^5\,c^4\right )}+\frac {29\,\sqrt {1-a^2\,x^2}}{35\,\sqrt {-a^2}\,\left (a\,c^4\,\sqrt {-a^2}+3\,a^3\,c^4\,x^2\,\sqrt {-a^2}-a^4\,c^4\,x^3\,\sqrt {-a^2}-3\,a^2\,c^4\,x\,\sqrt {-a^2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a*x + 1))/((1 - a^2*x^2)^(1/2)*(c - a*c*x)^4),x)

[Out]

(2*(1 - a^2*x^2)^(1/2))/(7*(a^3*c^4 - 4*a^4*c^4*x + 6*a^5*c^4*x^2 - 4*a^6*c^4*x^3 + a^7*c^4*x^4)) + (4*(1 - a^
2*x^2)^(1/2))/(3*(a^3*c^4 - 2*a^4*c^4*x + a^5*c^4*x^2)) + (4*a*(1 - a^2*x^2)^(1/2))/(35*(a^4*c^4 - 2*a^5*c^4*x
 + a^6*c^4*x^2)) + (23*(1 - a^2*x^2)^(1/2))/(105*(a*c^4*(-a^2)^(1/2) - a^2*c^4*x*(-a^2)^(1/2))*(-a^2)^(1/2)) -
 (2*a^2*(1 - a^2*x^2)^(1/2))/(3*(a^5*c^4 - 2*a^6*c^4*x + a^7*c^4*x^2)) + (29*(1 - a^2*x^2)^(1/2))/(35*(-a^2)^(
1/2)*(a*c^4*(-a^2)^(1/2) + 3*a^3*c^4*x^2*(-a^2)^(1/2) - a^4*c^4*x^3*(-a^2)^(1/2) - 3*a^2*c^4*x*(-a^2)^(1/2)))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {x^{2}}{a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 4 a^{3} x^{3} \sqrt {- a^{2} x^{2} + 1} + 6 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} - 4 a x \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx + \int \frac {a x^{3}}{a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 4 a^{3} x^{3} \sqrt {- a^{2} x^{2} + 1} + 6 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} - 4 a x \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx}{c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**2/(-a*c*x+c)**4,x)

[Out]

(Integral(x**2/(a**4*x**4*sqrt(-a**2*x**2 + 1) - 4*a**3*x**3*sqrt(-a**2*x**2 + 1) + 6*a**2*x**2*sqrt(-a**2*x**
2 + 1) - 4*a*x*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x) + Integral(a*x**3/(a**4*x**4*sqrt(-a**2*x**2 +
 1) - 4*a**3*x**3*sqrt(-a**2*x**2 + 1) + 6*a**2*x**2*sqrt(-a**2*x**2 + 1) - 4*a*x*sqrt(-a**2*x**2 + 1) + sqrt(
-a**2*x**2 + 1)), x))/c**4

________________________________________________________________________________________