3.314 \(\int \frac {e^{\tanh ^{-1}(a x)} (c-a c x)^3}{x^5} \, dx\)

Optimal. Leaf size=102 \[ -\frac {5 a^2 c^3 \sqrt {1-a^2 x^2}}{8 x^2}-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}+\frac {5}{8} a^4 c^3 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right ) \]

[Out]

-1/4*c^3*(-a^2*x^2+1)^(3/2)/x^4+2/3*a*c^3*(-a^2*x^2+1)^(3/2)/x^3+5/8*a^4*c^3*arctanh((-a^2*x^2+1)^(1/2))-5/8*a
^2*c^3*(-a^2*x^2+1)^(1/2)/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {6128, 1807, 807, 266, 47, 63, 208} \[ -\frac {5 a^2 c^3 \sqrt {1-a^2 x^2}}{8 x^2}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {5}{8} a^4 c^3 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*(c - a*c*x)^3)/x^5,x]

[Out]

(-5*a^2*c^3*Sqrt[1 - a^2*x^2])/(8*x^2) - (c^3*(1 - a^2*x^2)^(3/2))/(4*x^4) + (2*a*c^3*(1 - a^2*x^2)^(3/2))/(3*
x^3) + (5*a^4*c^3*ArcTanh[Sqrt[1 - a^2*x^2]])/8

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(a x)} (c-a c x)^3}{x^5} \, dx &=c \int \frac {(c-a c x)^2 \sqrt {1-a^2 x^2}}{x^5} \, dx\\ &=-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}-\frac {1}{4} c \int \frac {\left (8 a c^2-5 a^2 c^2 x\right ) \sqrt {1-a^2 x^2}}{x^4} \, dx\\ &=-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}+\frac {1}{4} \left (5 a^2 c^3\right ) \int \frac {\sqrt {1-a^2 x^2}}{x^3} \, dx\\ &=-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}+\frac {1}{8} \left (5 a^2 c^3\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-a^2 x}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {5 a^2 c^3 \sqrt {1-a^2 x^2}}{8 x^2}-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}-\frac {1}{16} \left (5 a^4 c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-a^2 x}} \, dx,x,x^2\right )\\ &=-\frac {5 a^2 c^3 \sqrt {1-a^2 x^2}}{8 x^2}-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}+\frac {1}{8} \left (5 a^2 c^3\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2}} \, dx,x,\sqrt {1-a^2 x^2}\right )\\ &=-\frac {5 a^2 c^3 \sqrt {1-a^2 x^2}}{8 x^2}-\frac {c^3 \left (1-a^2 x^2\right )^{3/2}}{4 x^4}+\frac {2 a c^3 \left (1-a^2 x^2\right )^{3/2}}{3 x^3}+\frac {5}{8} a^4 c^3 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 99, normalized size = 0.97 \[ \frac {c^3 \left (16 a^5 x^5+9 a^4 x^4-32 a^3 x^3-3 a^2 x^2+15 a^4 x^4 \sqrt {1-a^2 x^2} \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )+16 a x-6\right )}{24 x^4 \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcTanh[a*x]*(c - a*c*x)^3)/x^5,x]

[Out]

(c^3*(-6 + 16*a*x - 3*a^2*x^2 - 32*a^3*x^3 + 9*a^4*x^4 + 16*a^5*x^5 + 15*a^4*x^4*Sqrt[1 - a^2*x^2]*ArcTanh[Sqr
t[1 - a^2*x^2]]))/(24*x^4*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 84, normalized size = 0.82 \[ -\frac {15 \, a^{4} c^{3} x^{4} \log \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{x}\right ) + {\left (16 \, a^{3} c^{3} x^{3} + 9 \, a^{2} c^{3} x^{2} - 16 \, a c^{3} x + 6 \, c^{3}\right )} \sqrt {-a^{2} x^{2} + 1}}{24 \, x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^3/x^5,x, algorithm="fricas")

[Out]

-1/24*(15*a^4*c^3*x^4*log((sqrt(-a^2*x^2 + 1) - 1)/x) + (16*a^3*c^3*x^3 + 9*a^2*c^3*x^2 - 16*a*c^3*x + 6*c^3)*
sqrt(-a^2*x^2 + 1))/x^4

________________________________________________________________________________________

giac [B]  time = 0.42, size = 300, normalized size = 2.94 \[ \frac {{\left (3 \, a^{5} c^{3} - \frac {16 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} a^{3} c^{3}}{x} + \frac {24 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2} a c^{3}}{x^{2}} + \frac {48 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{3} c^{3}}{a x^{3}}\right )} a^{8} x^{4}}{192 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{4} {\left | a \right |}} + \frac {5 \, a^{5} c^{3} \log \left (\frac {{\left | -2 \, \sqrt {-a^{2} x^{2} + 1} {\left | a \right |} - 2 \, a \right |}}{2 \, a^{2} {\left | x \right |}}\right )}{8 \, {\left | a \right |}} - \frac {\frac {48 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} a^{5} c^{3} {\left | a \right |}}{x} + \frac {24 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2} a^{3} c^{3} {\left | a \right |}}{x^{2}} - \frac {16 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{3} a c^{3} {\left | a \right |}}{x^{3}} + \frac {3 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{4} c^{3} {\left | a \right |}}{a x^{4}}}{192 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^3/x^5,x, algorithm="giac")

[Out]

1/192*(3*a^5*c^3 - 16*(sqrt(-a^2*x^2 + 1)*abs(a) + a)*a^3*c^3/x + 24*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*a*c^3/x
^2 + 48*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^3*c^3/(a*x^3))*a^8*x^4/((sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*abs(a)) + 5/
8*a^5*c^3*log(1/2*abs(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*abs(x)))/abs(a) - 1/192*(48*(sqrt(-a^2*x^2 + 1)
*abs(a) + a)*a^5*c^3*abs(a)/x + 24*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*a^3*c^3*abs(a)/x^2 - 16*(sqrt(-a^2*x^2 +
1)*abs(a) + a)^3*a*c^3*abs(a)/x^3 + 3*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^4*c^3*abs(a)/(a*x^4))/a^4

________________________________________________________________________________________

maple [A]  time = 0.04, size = 144, normalized size = 1.41 \[ -c^{3} \left (-a^{4} \arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )+\frac {2 a^{3} \sqrt {-a^{2} x^{2}+1}}{x}+2 a \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{3 x^{3}}-\frac {2 a^{2} \sqrt {-a^{2} x^{2}+1}}{3 x}\right )+\frac {\sqrt {-a^{2} x^{2}+1}}{4 x^{4}}-\frac {3 a^{2} \left (-\frac {\sqrt {-a^{2} x^{2}+1}}{2 x^{2}}-\frac {a^{2} \arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )}{2}\right )}{4}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^3/x^5,x)

[Out]

-c^3*(-a^4*arctanh(1/(-a^2*x^2+1)^(1/2))+2*a^3*(-a^2*x^2+1)^(1/2)/x+2*a*(-1/3*(-a^2*x^2+1)^(1/2)/x^3-2/3*a^2*(
-a^2*x^2+1)^(1/2)/x)+1/4*(-a^2*x^2+1)^(1/2)/x^4-3/4*a^2*(-1/2*(-a^2*x^2+1)^(1/2)/x^2-1/2*a^2*arctanh(1/(-a^2*x
^2+1)^(1/2))))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 122, normalized size = 1.20 \[ \frac {5}{8} \, a^{4} c^{3} \log \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac {2}{{\left | x \right |}}\right ) - \frac {2 \, \sqrt {-a^{2} x^{2} + 1} a^{3} c^{3}}{3 \, x} - \frac {3 \, \sqrt {-a^{2} x^{2} + 1} a^{2} c^{3}}{8 \, x^{2}} + \frac {2 \, \sqrt {-a^{2} x^{2} + 1} a c^{3}}{3 \, x^{3}} - \frac {\sqrt {-a^{2} x^{2} + 1} c^{3}}{4 \, x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^3/x^5,x, algorithm="maxima")

[Out]

5/8*a^4*c^3*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - 2/3*sqrt(-a^2*x^2 + 1)*a^3*c^3/x - 3/8*sqrt(-a^2*x^2
 + 1)*a^2*c^3/x^2 + 2/3*sqrt(-a^2*x^2 + 1)*a*c^3/x^3 - 1/4*sqrt(-a^2*x^2 + 1)*c^3/x^4

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 113, normalized size = 1.11 \[ \frac {2\,a\,c^3\,\sqrt {1-a^2\,x^2}}{3\,x^3}-\frac {c^3\,\sqrt {1-a^2\,x^2}}{4\,x^4}-\frac {3\,a^2\,c^3\,\sqrt {1-a^2\,x^2}}{8\,x^2}-\frac {2\,a^3\,c^3\,\sqrt {1-a^2\,x^2}}{3\,x}-\frac {a^4\,c^3\,\mathrm {atan}\left (\sqrt {1-a^2\,x^2}\,1{}\mathrm {i}\right )\,5{}\mathrm {i}}{8} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - a*c*x)^3*(a*x + 1))/(x^5*(1 - a^2*x^2)^(1/2)),x)

[Out]

(2*a*c^3*(1 - a^2*x^2)^(1/2))/(3*x^3) - (c^3*(1 - a^2*x^2)^(1/2))/(4*x^4) - (a^4*c^3*atan((1 - a^2*x^2)^(1/2)*
1i)*5i)/8 - (3*a^2*c^3*(1 - a^2*x^2)^(1/2))/(8*x^2) - (2*a^3*c^3*(1 - a^2*x^2)^(1/2))/(3*x)

________________________________________________________________________________________

sympy [C]  time = 7.34, size = 347, normalized size = 3.40 \[ - a^{4} c^{3} \left (\begin {cases} - \operatorname {acosh}{\left (\frac {1}{a x} \right )} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\i \operatorname {asin}{\left (\frac {1}{a x} \right )} & \text {otherwise} \end {cases}\right ) + 2 a^{3} c^{3} \left (\begin {cases} - \frac {i \sqrt {a^{2} x^{2} - 1}}{x} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\- \frac {\sqrt {- a^{2} x^{2} + 1}}{x} & \text {otherwise} \end {cases}\right ) - 2 a c^{3} \left (\begin {cases} - \frac {2 i a^{2} \sqrt {a^{2} x^{2} - 1}}{3 x} - \frac {i \sqrt {a^{2} x^{2} - 1}}{3 x^{3}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\- \frac {2 a^{2} \sqrt {- a^{2} x^{2} + 1}}{3 x} - \frac {\sqrt {- a^{2} x^{2} + 1}}{3 x^{3}} & \text {otherwise} \end {cases}\right ) + c^{3} \left (\begin {cases} - \frac {3 a^{4} \operatorname {acosh}{\left (\frac {1}{a x} \right )}}{8} + \frac {3 a^{3}}{8 x \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} - \frac {a}{8 x^{3} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} - \frac {1}{4 a x^{5} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\\frac {3 i a^{4} \operatorname {asin}{\left (\frac {1}{a x} \right )}}{8} - \frac {3 i a^{3}}{8 x \sqrt {1 - \frac {1}{a^{2} x^{2}}}} + \frac {i a}{8 x^{3} \sqrt {1 - \frac {1}{a^{2} x^{2}}}} + \frac {i}{4 a x^{5} \sqrt {1 - \frac {1}{a^{2} x^{2}}}} & \text {otherwise} \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(-a*c*x+c)**3/x**5,x)

[Out]

-a**4*c**3*Piecewise((-acosh(1/(a*x)), 1/Abs(a**2*x**2) > 1), (I*asin(1/(a*x)), True)) + 2*a**3*c**3*Piecewise
((-I*sqrt(a**2*x**2 - 1)/x, Abs(a**2*x**2) > 1), (-sqrt(-a**2*x**2 + 1)/x, True)) - 2*a*c**3*Piecewise((-2*I*a
**2*sqrt(a**2*x**2 - 1)/(3*x) - I*sqrt(a**2*x**2 - 1)/(3*x**3), Abs(a**2*x**2) > 1), (-2*a**2*sqrt(-a**2*x**2
+ 1)/(3*x) - sqrt(-a**2*x**2 + 1)/(3*x**3), True)) + c**3*Piecewise((-3*a**4*acosh(1/(a*x))/8 + 3*a**3/(8*x*sq
rt(-1 + 1/(a**2*x**2))) - a/(8*x**3*sqrt(-1 + 1/(a**2*x**2))) - 1/(4*a*x**5*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a
**2*x**2) > 1), (3*I*a**4*asin(1/(a*x))/8 - 3*I*a**3/(8*x*sqrt(1 - 1/(a**2*x**2))) + I*a/(8*x**3*sqrt(1 - 1/(a
**2*x**2))) + I/(4*a*x**5*sqrt(1 - 1/(a**2*x**2))), True))

________________________________________________________________________________________