3.297 \(\int e^{\tanh ^{-1}(a x)} x (c-a c x)^2 \, dx\)

Optimal. Leaf size=70 \[ -\frac {c^2 (4-3 a x) \left (1-a^2 x^2\right )^{3/2}}{12 a^2}-\frac {c^2 x \sqrt {1-a^2 x^2}}{8 a}-\frac {c^2 \sin ^{-1}(a x)}{8 a^2} \]

[Out]

-1/12*c^2*(-3*a*x+4)*(-a^2*x^2+1)^(3/2)/a^2-1/8*c^2*arcsin(a*x)/a^2-1/8*c^2*x*(-a^2*x^2+1)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {6128, 780, 195, 216} \[ -\frac {c^2 (4-3 a x) \left (1-a^2 x^2\right )^{3/2}}{12 a^2}-\frac {c^2 x \sqrt {1-a^2 x^2}}{8 a}-\frac {c^2 \sin ^{-1}(a x)}{8 a^2} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]*x*(c - a*c*x)^2,x]

[Out]

-(c^2*x*Sqrt[1 - a^2*x^2])/(8*a) - (c^2*(4 - 3*a*x)*(1 - a^2*x^2)^(3/2))/(12*a^2) - (c^2*ArcSin[a*x])/(8*a^2)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 780

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(((e*f + d*g)*(2*p
 + 3) + 2*e*g*(p + 1)*x)*(a + c*x^2)^(p + 1))/(2*c*(p + 1)*(2*p + 3)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(a x)} x (c-a c x)^2 \, dx &=c \int x (c-a c x) \sqrt {1-a^2 x^2} \, dx\\ &=-\frac {c^2 (4-3 a x) \left (1-a^2 x^2\right )^{3/2}}{12 a^2}-\frac {c^2 \int \sqrt {1-a^2 x^2} \, dx}{4 a}\\ &=-\frac {c^2 x \sqrt {1-a^2 x^2}}{8 a}-\frac {c^2 (4-3 a x) \left (1-a^2 x^2\right )^{3/2}}{12 a^2}-\frac {c^2 \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{8 a}\\ &=-\frac {c^2 x \sqrt {1-a^2 x^2}}{8 a}-\frac {c^2 (4-3 a x) \left (1-a^2 x^2\right )^{3/2}}{12 a^2}-\frac {c^2 \sin ^{-1}(a x)}{8 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 67, normalized size = 0.96 \[ -\frac {c^2 \left (\sqrt {1-a^2 x^2} \left (6 a^3 x^3-8 a^2 x^2-3 a x+8\right )-6 \sin ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )\right )}{24 a^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]*x*(c - a*c*x)^2,x]

[Out]

-1/24*(c^2*(Sqrt[1 - a^2*x^2]*(8 - 3*a*x - 8*a^2*x^2 + 6*a^3*x^3) - 6*ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/a^2

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 82, normalized size = 1.17 \[ \frac {6 \, c^{2} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) - {\left (6 \, a^{3} c^{2} x^{3} - 8 \, a^{2} c^{2} x^{2} - 3 \, a c^{2} x + 8 \, c^{2}\right )} \sqrt {-a^{2} x^{2} + 1}}{24 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^2,x, algorithm="fricas")

[Out]

1/24*(6*c^2*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) - (6*a^3*c^2*x^3 - 8*a^2*c^2*x^2 - 3*a*c^2*x + 8*c^2)*sqrt(
-a^2*x^2 + 1))/a^2

________________________________________________________________________________________

giac [A]  time = 0.30, size = 69, normalized size = 0.99 \[ -\frac {c^{2} \arcsin \left (a x\right ) \mathrm {sgn}\relax (a)}{8 \, a {\left | a \right |}} - \frac {1}{24} \, \sqrt {-a^{2} x^{2} + 1} {\left ({\left (2 \, {\left (3 \, a c^{2} x - 4 \, c^{2}\right )} x - \frac {3 \, c^{2}}{a}\right )} x + \frac {8 \, c^{2}}{a^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^2,x, algorithm="giac")

[Out]

-1/8*c^2*arcsin(a*x)*sgn(a)/(a*abs(a)) - 1/24*sqrt(-a^2*x^2 + 1)*((2*(3*a*c^2*x - 4*c^2)*x - 3*c^2/a)*x + 8*c^
2/a^2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 117, normalized size = 1.67 \[ -\frac {c^{2} a \,x^{3} \sqrt {-a^{2} x^{2}+1}}{4}+\frac {c^{2} x \sqrt {-a^{2} x^{2}+1}}{8 a}-\frac {c^{2} \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{8 a \sqrt {a^{2}}}+\frac {c^{2} x^{2} \sqrt {-a^{2} x^{2}+1}}{3}-\frac {c^{2} \sqrt {-a^{2} x^{2}+1}}{3 a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^2,x)

[Out]

-1/4*c^2*a*x^3*(-a^2*x^2+1)^(1/2)+1/8*c^2*x*(-a^2*x^2+1)^(1/2)/a-1/8*c^2/a/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-
a^2*x^2+1)^(1/2))+1/3*c^2*x^2*(-a^2*x^2+1)^(1/2)-1/3*c^2/a^2*(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 95, normalized size = 1.36 \[ -\frac {1}{4} \, \sqrt {-a^{2} x^{2} + 1} a c^{2} x^{3} + \frac {1}{3} \, \sqrt {-a^{2} x^{2} + 1} c^{2} x^{2} + \frac {\sqrt {-a^{2} x^{2} + 1} c^{2} x}{8 \, a} - \frac {c^{2} \arcsin \left (a x\right )}{8 \, a^{2}} - \frac {\sqrt {-a^{2} x^{2} + 1} c^{2}}{3 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^2,x, algorithm="maxima")

[Out]

-1/4*sqrt(-a^2*x^2 + 1)*a*c^2*x^3 + 1/3*sqrt(-a^2*x^2 + 1)*c^2*x^2 + 1/8*sqrt(-a^2*x^2 + 1)*c^2*x/a - 1/8*c^2*
arcsin(a*x)/a^2 - 1/3*sqrt(-a^2*x^2 + 1)*c^2/a^2

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 108, normalized size = 1.54 \[ \frac {c^2\,x^2\,\sqrt {1-a^2\,x^2}}{3}-\frac {c^2\,\sqrt {1-a^2\,x^2}}{3\,a^2}+\frac {c^2\,x\,\sqrt {1-a^2\,x^2}}{8\,a}-\frac {a\,c^2\,x^3\,\sqrt {1-a^2\,x^2}}{4}-\frac {c^2\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{8\,a\,\sqrt {-a^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(c - a*c*x)^2*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)

[Out]

(c^2*x^2*(1 - a^2*x^2)^(1/2))/3 - (c^2*(1 - a^2*x^2)^(1/2))/(3*a^2) + (c^2*x*(1 - a^2*x^2)^(1/2))/(8*a) - (a*c
^2*x^3*(1 - a^2*x^2)^(1/2))/4 - (c^2*asinh(x*(-a^2)^(1/2)))/(8*a*(-a^2)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 7.17, size = 330, normalized size = 4.71 \[ a^{3} c^{2} \left (\begin {cases} - \frac {i x^{5}}{4 \sqrt {a^{2} x^{2} - 1}} - \frac {i x^{3}}{8 a^{2} \sqrt {a^{2} x^{2} - 1}} + \frac {3 i x}{8 a^{4} \sqrt {a^{2} x^{2} - 1}} - \frac {3 i \operatorname {acosh}{\left (a x \right )}}{8 a^{5}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{5}}{4 \sqrt {- a^{2} x^{2} + 1}} + \frac {x^{3}}{8 a^{2} \sqrt {- a^{2} x^{2} + 1}} - \frac {3 x}{8 a^{4} \sqrt {- a^{2} x^{2} + 1}} + \frac {3 \operatorname {asin}{\left (a x \right )}}{8 a^{5}} & \text {otherwise} \end {cases}\right ) - a^{2} c^{2} \left (\begin {cases} - \frac {x^{2} \sqrt {- a^{2} x^{2} + 1}}{3 a^{2}} - \frac {2 \sqrt {- a^{2} x^{2} + 1}}{3 a^{4}} & \text {for}\: a \neq 0 \\\frac {x^{4}}{4} & \text {otherwise} \end {cases}\right ) - a c^{2} \left (\begin {cases} - \frac {i x \sqrt {a^{2} x^{2} - 1}}{2 a^{2}} - \frac {i \operatorname {acosh}{\left (a x \right )}}{2 a^{3}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{3}}{2 \sqrt {- a^{2} x^{2} + 1}} - \frac {x}{2 a^{2} \sqrt {- a^{2} x^{2} + 1}} + \frac {\operatorname {asin}{\left (a x \right )}}{2 a^{3}} & \text {otherwise} \end {cases}\right ) + c^{2} \left (\begin {cases} \frac {x^{2}}{2} & \text {for}\: a^{2} = 0 \\- \frac {\sqrt {- a^{2} x^{2} + 1}}{a^{2}} & \text {otherwise} \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x*(-a*c*x+c)**2,x)

[Out]

a**3*c**2*Piecewise((-I*x**5/(4*sqrt(a**2*x**2 - 1)) - I*x**3/(8*a**2*sqrt(a**2*x**2 - 1)) + 3*I*x/(8*a**4*sqr
t(a**2*x**2 - 1)) - 3*I*acosh(a*x)/(8*a**5), Abs(a**2*x**2) > 1), (x**5/(4*sqrt(-a**2*x**2 + 1)) + x**3/(8*a**
2*sqrt(-a**2*x**2 + 1)) - 3*x/(8*a**4*sqrt(-a**2*x**2 + 1)) + 3*asin(a*x)/(8*a**5), True)) - a**2*c**2*Piecewi
se((-x**2*sqrt(-a**2*x**2 + 1)/(3*a**2) - 2*sqrt(-a**2*x**2 + 1)/(3*a**4), Ne(a, 0)), (x**4/4, True)) - a*c**2
*Piecewise((-I*x*sqrt(a**2*x**2 - 1)/(2*a**2) - I*acosh(a*x)/(2*a**3), Abs(a**2*x**2) > 1), (x**3/(2*sqrt(-a**
2*x**2 + 1)) - x/(2*a**2*sqrt(-a**2*x**2 + 1)) + asin(a*x)/(2*a**3), True)) + c**2*Piecewise((x**2/2, Eq(a**2,
 0)), (-sqrt(-a**2*x**2 + 1)/a**2, True))

________________________________________________________________________________________