3.282 \(\int \frac {e^{n \tanh ^{-1}(a x)}}{\sqrt {c-a c x}} \, dx\)

Optimal. Leaf size=81 \[ -\frac {2^{\frac {n}{2}+1} \sqrt {c-a c x} (1-a x)^{-n/2} \, _2F_1\left (\frac {1-n}{2},-\frac {n}{2};\frac {3-n}{2};\frac {1}{2} (1-a x)\right )}{a c (1-n)} \]

[Out]

-2^(1+1/2*n)*hypergeom([-1/2*n, 1/2-1/2*n],[3/2-1/2*n],-1/2*a*x+1/2)*(-a*c*x+c)^(1/2)/a/c/(1-n)/((-a*x+1)^(1/2
*n))

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {6130, 23, 69} \[ -\frac {2^{\frac {n}{2}+1} \sqrt {c-a c x} (1-a x)^{-n/2} \, _2F_1\left (\frac {1-n}{2},-\frac {n}{2};\frac {3-n}{2};\frac {1}{2} (1-a x)\right )}{a c (1-n)} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTanh[a*x])/Sqrt[c - a*c*x],x]

[Out]

-((2^(1 + n/2)*Sqrt[c - a*c*x]*Hypergeometric2F1[(1 - n)/2, -n/2, (3 - n)/2, (1 - a*x)/2])/(a*c*(1 - n)*(1 - a
*x)^(n/2)))

Rule 23

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((c_) + (d_.)*(v_))^(n_), x_Symbol] :> Dist[(a + b*v)^m/(c + d*v)^m, Int[u*
(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] &&  !(IntegerQ[m] || IntegerQ[n
] || GtQ[b/d, 0])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 6130

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[(u*(c + d*x)^p*(1 + a*x)^(
n/2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rubi steps

\begin {align*} \int \frac {e^{n \tanh ^{-1}(a x)}}{\sqrt {c-a c x}} \, dx &=\int \frac {(1-a x)^{-n/2} (1+a x)^{n/2}}{\sqrt {c-a c x}} \, dx\\ &=\left ((1-a x)^{-n/2} (c-a c x)^{n/2}\right ) \int (1+a x)^{n/2} (c-a c x)^{-\frac {1}{2}-\frac {n}{2}} \, dx\\ &=-\frac {2^{1+\frac {n}{2}} (1-a x)^{-n/2} \sqrt {c-a c x} \, _2F_1\left (\frac {1-n}{2},-\frac {n}{2};\frac {3-n}{2};\frac {1}{2} (1-a x)\right )}{a c (1-n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 78, normalized size = 0.96 \[ \frac {2^{\frac {n}{2}+1} \sqrt {c-a c x} (1-a x)^{-n/2} \, _2F_1\left (\frac {1}{2}-\frac {n}{2},-\frac {n}{2};\frac {3}{2}-\frac {n}{2};\frac {1}{2}-\frac {a x}{2}\right )}{a c (n-1)} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*ArcTanh[a*x])/Sqrt[c - a*c*x],x]

[Out]

(2^(1 + n/2)*Sqrt[c - a*c*x]*Hypergeometric2F1[1/2 - n/2, -1/2*n, 3/2 - n/2, 1/2 - (a*x)/2])/(a*c*(-1 + n)*(1
- a*x)^(n/2))

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-a c x + c} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{a c x - c}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/(-a*c*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a*c*x + c)*((a*x + 1)/(a*x - 1))^(1/2*n)/(a*c*x - c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{\sqrt {-a c x + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/(-a*c*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(((a*x + 1)/(a*x - 1))^(1/2*n)/sqrt(-a*c*x + c), x)

________________________________________________________________________________________

maple [F]  time = 0.21, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{n \arctanh \left (a x \right )}}{\sqrt {-a c x +c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))/(-a*c*x+c)^(1/2),x)

[Out]

int(exp(n*arctanh(a*x))/(-a*c*x+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{\sqrt {-a c x + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/(-a*c*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(((a*x + 1)/(a*x - 1))^(1/2*n)/sqrt(-a*c*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {e}}^{n\,\mathrm {atanh}\left (a\,x\right )}}{\sqrt {c-a\,c\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*atanh(a*x))/(c - a*c*x)^(1/2),x)

[Out]

int(exp(n*atanh(a*x))/(c - a*c*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{n \operatorname {atanh}{\left (a x \right )}}}{\sqrt {- c \left (a x - 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))/(-a*c*x+c)**(1/2),x)

[Out]

Integral(exp(n*atanh(a*x))/sqrt(-c*(a*x - 1)), x)

________________________________________________________________________________________