3.249 \(\int \frac {e^{3 \tanh ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx\)

Optimal. Leaf size=122 \[ \frac {3 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {2} \sqrt {c-a c x}}\right )}{4 \sqrt {2} a c^{3/2}}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{2 a (c-a c x)^{7/2}}-\frac {3 \sqrt {1-a^2 x^2}}{4 a (c-a c x)^{3/2}} \]

[Out]

1/2*c^2*(-a^2*x^2+1)^(3/2)/a/(-a*c*x+c)^(7/2)+3/8*arctanh(1/2*c^(1/2)*(-a^2*x^2+1)^(1/2)*2^(1/2)/(-a*c*x+c)^(1
/2))/a/c^(3/2)*2^(1/2)-3/4*(-a^2*x^2+1)^(1/2)/a/(-a*c*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6127, 663, 661, 208} \[ \frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{2 a (c-a c x)^{7/2}}+\frac {3 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {2} \sqrt {c-a c x}}\right )}{4 \sqrt {2} a c^{3/2}}-\frac {3 \sqrt {1-a^2 x^2}}{4 a (c-a c x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])/(c - a*c*x)^(3/2),x]

[Out]

(-3*Sqrt[1 - a^2*x^2])/(4*a*(c - a*c*x)^(3/2)) + (c^2*(1 - a^2*x^2)^(3/2))/(2*a*(c - a*c*x)^(7/2)) + (3*ArcTan
h[(Sqrt[c]*Sqrt[1 - a^2*x^2])/(Sqrt[2]*Sqrt[c - a*c*x])])/(4*Sqrt[2]*a*c^(3/2))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 661

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(2*c*d + e^2*x^2
), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0]

Rule 663

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + p + 1)), x] - Dist[(c*p)/(e^2*(m + p + 1)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[
{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1
, 0] && IntegerQ[2*p]

Rule 6127

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{3 \tanh ^{-1}(a x)}}{(c-a c x)^{3/2}} \, dx &=c^3 \int \frac {\left (1-a^2 x^2\right )^{3/2}}{(c-a c x)^{9/2}} \, dx\\ &=\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{2 a (c-a c x)^{7/2}}-\frac {1}{4} (3 c) \int \frac {\sqrt {1-a^2 x^2}}{(c-a c x)^{5/2}} \, dx\\ &=-\frac {3 \sqrt {1-a^2 x^2}}{4 a (c-a c x)^{3/2}}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{2 a (c-a c x)^{7/2}}+\frac {3 \int \frac {1}{\sqrt {c-a c x} \sqrt {1-a^2 x^2}} \, dx}{8 c}\\ &=-\frac {3 \sqrt {1-a^2 x^2}}{4 a (c-a c x)^{3/2}}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{2 a (c-a c x)^{7/2}}-\frac {1}{4} (3 a) \operatorname {Subst}\left (\int \frac {1}{-2 a^2 c+a^2 c^2 x^2} \, dx,x,\frac {\sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right )\\ &=-\frac {3 \sqrt {1-a^2 x^2}}{4 a (c-a c x)^{3/2}}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{2 a (c-a c x)^{7/2}}+\frac {3 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {2} \sqrt {c-a c x}}\right )}{4 \sqrt {2} a c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 91, normalized size = 0.75 \[ \frac {\sqrt {c-a c x} \left (10 a^2 x^2+8 a x+3 (a x-1)^2 \sqrt {2 a x+2} \tanh ^{-1}\left (\frac {\sqrt {a x+1}}{\sqrt {2}}\right )-2\right )}{8 a c^2 (a x-1)^2 \sqrt {1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcTanh[a*x])/(c - a*c*x)^(3/2),x]

[Out]

(Sqrt[c - a*c*x]*(-2 + 8*a*x + 10*a^2*x^2 + 3*(-1 + a*x)^2*Sqrt[2 + 2*a*x]*ArcTanh[Sqrt[1 + a*x]/Sqrt[2]]))/(8
*a*c^2*(-1 + a*x)^2*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 312, normalized size = 2.56 \[ \left [\frac {3 \, \sqrt {2} {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x - 2 \, \sqrt {2} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) - 4 \, \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} {\left (5 \, a x - 1\right )}}{16 \, {\left (a^{4} c^{2} x^{3} - 3 \, a^{3} c^{2} x^{2} + 3 \, a^{2} c^{2} x - a c^{2}\right )}}, \frac {3 \, \sqrt {2} {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {2} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) - 2 \, \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} {\left (5 \, a x - 1\right )}}{8 \, {\left (a^{4} c^{2} x^{3} - 3 \, a^{3} c^{2} x^{2} + 3 \, a^{2} c^{2} x - a c^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(3/2),x, algorithm="fricas")

[Out]

[1/16*(3*sqrt(2)*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt(c)*log(-(a^2*c*x^2 + 2*a*c*x - 2*sqrt(2)*sqrt(-a^2*x^2
 + 1)*sqrt(-a*c*x + c)*sqrt(c) - 3*c)/(a^2*x^2 - 2*a*x + 1)) - 4*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*(5*a*x -
1))/(a^4*c^2*x^3 - 3*a^3*c^2*x^2 + 3*a^2*c^2*x - a*c^2), 1/8*(3*sqrt(2)*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt
(-c)*arctan(sqrt(2)*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(-c)/(a^2*c*x^2 - c)) - 2*sqrt(-a^2*x^2 + 1)*sqrt(
-a*c*x + c)*(5*a*x - 1))/(a^4*c^2*x^3 - 3*a^3*c^2*x^2 + 3*a^2*c^2*x - a*c^2)]

________________________________________________________________________________________

giac [A]  time = 0.41, size = 73, normalized size = 0.60 \[ -\frac {\frac {3 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {a c x + c}}{2 \, \sqrt {-c}}\right )}{\sqrt {-c}} - \frac {2 \, {\left (5 \, {\left (a c x + c\right )}^{\frac {3}{2}} - 6 \, \sqrt {a c x + c} c\right )}}{{\left (a c x - c\right )}^{2}}}{8 \, a {\left | c \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(3/2),x, algorithm="giac")

[Out]

-1/8*(3*sqrt(2)*arctan(1/2*sqrt(2)*sqrt(a*c*x + c)/sqrt(-c))/sqrt(-c) - 2*(5*(a*c*x + c)^(3/2) - 6*sqrt(a*c*x
+ c)*c)/(a*c*x - c)^2)/(a*abs(c))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 158, normalized size = 1.30 \[ -\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a x -1\right )}\, \left (3 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) x^{2} a^{2} c -6 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) x a c +10 x a \sqrt {c \left (a x +1\right )}\, \sqrt {c}+3 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c -2 \sqrt {c \left (a x +1\right )}\, \sqrt {c}\right )}{8 c^{\frac {5}{2}} \left (a x -1\right )^{3} \sqrt {c \left (a x +1\right )}\, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(3/2),x)

[Out]

-1/8*(-a^2*x^2+1)^(1/2)*(-c*(a*x-1))^(1/2)/c^(5/2)*(3*2^(1/2)*arctanh(1/2*(c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*x
^2*a^2*c-6*2^(1/2)*arctanh(1/2*(c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*x*a*c+10*x*a*(c*(a*x+1))^(1/2)*c^(1/2)+3*2^(
1/2)*arctanh(1/2*(c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*c-2*(c*(a*x+1))^(1/2)*c^(1/2))/(a*x-1)^3/(c*(a*x+1))^(1/2)
/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} {\left (-a c x + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*(-a*c*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a\,x+1\right )}^3}{{\left (1-a^2\,x^2\right )}^{3/2}\,{\left (c-a\,c\,x\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + 1)^3/((1 - a^2*x^2)^(3/2)*(c - a*c*x)^(3/2)),x)

[Out]

int((a*x + 1)^3/((1 - a^2*x^2)^(3/2)*(c - a*c*x)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a x + 1\right )^{3}}{\left (- c \left (a x - 1\right )\right )^{\frac {3}{2}} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)/(-a*c*x+c)**(3/2),x)

[Out]

Integral((a*x + 1)**3/((-c*(a*x - 1))**(3/2)*(-(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________