3.220 \(\int \frac {e^{-3 \tanh ^{-1}(a x)}}{c-a c x} \, dx\)

Optimal. Leaf size=41 \[ -\frac {2 (1-a x)}{a c \sqrt {1-a^2 x^2}}-\frac {\sin ^{-1}(a x)}{a c} \]

[Out]

-arcsin(a*x)/a/c-2*(-a*x+1)/a/c/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6127, 653, 216} \[ -\frac {2 (1-a x)}{a c \sqrt {1-a^2 x^2}}-\frac {\sin ^{-1}(a x)}{a c} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcTanh[a*x])*(c - a*c*x)),x]

[Out]

(-2*(1 - a*x))/(a*c*Sqrt[1 - a^2*x^2]) - ArcSin[a*x]/(a*c)

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 653

Int[((d_) + (e_.)*(x_))^2*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)*(a + c*x^2)^(p + 1))/(c*(
p + 1)), x] - Dist[(e^2*(p + 2))/(c*(p + 1)), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, p}, x] &&
EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p, -1]

Rule 6127

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)}}{c-a c x} \, dx &=\frac {\int \frac {(c-a c x)^2}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c^3}\\ &=-\frac {2 (1-a x)}{a c \sqrt {1-a^2 x^2}}-\frac {\int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{c}\\ &=-\frac {2 (1-a x)}{a c \sqrt {1-a^2 x^2}}-\frac {\sin ^{-1}(a x)}{a c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 59, normalized size = 1.44 \[ \frac {2 \left (\sqrt {1-a^2 x^2} \sin ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )+a x-1\right )}{a c \sqrt {1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^(3*ArcTanh[a*x])*(c - a*c*x)),x]

[Out]

(2*(-1 + a*x + Sqrt[1 - a^2*x^2]*ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/(a*c*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 60, normalized size = 1.46 \[ -\frac {2 \, {\left (a x - {\left (a x + 1\right )} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + \sqrt {-a^{2} x^{2} + 1} + 1\right )}}{a^{2} c x + a c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c),x, algorithm="fricas")

[Out]

-2*(a*x - (a*x + 1)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + sqrt(-a^2*x^2 + 1) + 1)/(a^2*c*x + a*c)

________________________________________________________________________________________

giac [A]  time = 0.27, size = 53, normalized size = 1.29 \[ -\frac {\arcsin \left (a x\right ) \mathrm {sgn}\relax (a)}{c {\left | a \right |}} + \frac {4}{c {\left (\frac {\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a}{a^{2} x} + 1\right )} {\left | a \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c),x, algorithm="giac")

[Out]

-arcsin(a*x)*sgn(a)/(c*abs(a)) + 4/(c*((sqrt(-a^2*x^2 + 1)*abs(a) + a)/(a^2*x) + 1)*abs(a))

________________________________________________________________________________________

maple [B]  time = 0.05, size = 292, normalized size = 7.12 \[ -\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{24 c a}+\frac {\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}\, x}{16 c}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}\right )}{16 c \sqrt {a^{2}}}-\frac {3 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{4 c \,a^{3} \left (x +\frac {1}{a}\right )^{2}}-\frac {17 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{24 c a}-\frac {17 \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}\, x}{16 c}-\frac {17 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{16 c \sqrt {a^{2}}}-\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{2 c \,a^{4} \left (x +\frac {1}{a}\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c),x)

[Out]

-1/24/c/a*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(3/2)+1/16/c*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)*x+1/16/c/(a^2)^(1/2)*ar
ctan((a^2)^(1/2)*x/(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2))-3/4/c/a^3/(x+1/a)^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)-
17/24/c/a*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(3/2)-17/16/c*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)*x-17/16/c/(a^2)^(1/2)*
arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))-1/2/c/a^4/(x+1/a)^3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2
)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (a c x - c\right )} {\left (a x + 1\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c),x, algorithm="maxima")

[Out]

-integrate((-a^2*x^2 + 1)^(3/2)/((a*c*x - c)*(a*x + 1)^3), x)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 70, normalized size = 1.71 \[ \frac {2\,\sqrt {1-a^2\,x^2}}{c\,\left (x\,\sqrt {-a^2}+\frac {\sqrt {-a^2}}{a}\right )\,\sqrt {-a^2}}-\frac {\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{c\,\sqrt {-a^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^2*x^2)^(3/2)/((c - a*c*x)*(a*x + 1)^3),x)

[Out]

(2*(1 - a^2*x^2)^(1/2))/(c*(x*(-a^2)^(1/2) + (-a^2)^(1/2)/a)*(-a^2)^(1/2)) - asinh(x*(-a^2)^(1/2))/(c*(-a^2)^(
1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \frac {\int \frac {\sqrt {- a^{2} x^{2} + 1}}{a^{4} x^{4} + 2 a^{3} x^{3} - 2 a x - 1}\, dx + \int \left (- \frac {a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1}}{a^{4} x^{4} + 2 a^{3} x^{3} - 2 a x - 1}\right )\, dx}{c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/(-a*c*x+c),x)

[Out]

-(Integral(sqrt(-a**2*x**2 + 1)/(a**4*x**4 + 2*a**3*x**3 - 2*a*x - 1), x) + Integral(-a**2*x**2*sqrt(-a**2*x**
2 + 1)/(a**4*x**4 + 2*a**3*x**3 - 2*a*x - 1), x))/c

________________________________________________________________________________________