3.22 \(\int \frac {e^{3 \tanh ^{-1}(a x)}}{x} \, dx\)

Optimal. Leaf size=48 \[ \frac {4 \sqrt {1-a^2 x^2}}{1-a x}-\tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )-\sin ^{-1}(a x) \]

[Out]

-arcsin(a*x)-arctanh((-a^2*x^2+1)^(1/2))+4*(-a^2*x^2+1)^(1/2)/(-a*x+1)

________________________________________________________________________________________

Rubi [A]  time = 0.79, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.583, Rules used = {6124, 6742, 216, 266, 63, 208, 651} \[ \frac {4 \sqrt {1-a^2 x^2}}{1-a x}-\tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )-\sin ^{-1}(a x) \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])/x,x]

[Out]

(4*Sqrt[1 - a^2*x^2])/(1 - a*x) - ArcSin[a*x] - ArcTanh[Sqrt[1 - a^2*x^2]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 6124

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/
2)*Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {e^{3 \tanh ^{-1}(a x)}}{x} \, dx &=\int \frac {(1+a x)^2}{x (1-a x) \sqrt {1-a^2 x^2}} \, dx\\ &=\int \left (-\frac {a}{\sqrt {1-a^2 x^2}}+\frac {1}{x \sqrt {1-a^2 x^2}}-\frac {4 a}{(-1+a x) \sqrt {1-a^2 x^2}}\right ) \, dx\\ &=-\left (a \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx\right )-(4 a) \int \frac {1}{(-1+a x) \sqrt {1-a^2 x^2}} \, dx+\int \frac {1}{x \sqrt {1-a^2 x^2}} \, dx\\ &=\frac {4 \sqrt {1-a^2 x^2}}{1-a x}-\sin ^{-1}(a x)+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-a^2 x}} \, dx,x,x^2\right )\\ &=\frac {4 \sqrt {1-a^2 x^2}}{1-a x}-\sin ^{-1}(a x)-\frac {\operatorname {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2}} \, dx,x,\sqrt {1-a^2 x^2}\right )}{a^2}\\ &=\frac {4 \sqrt {1-a^2 x^2}}{1-a x}-\sin ^{-1}(a x)-\tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 51, normalized size = 1.06 \[ -\frac {4 \sqrt {1-a^2 x^2}}{a x-1}-\log \left (\sqrt {1-a^2 x^2}+1\right )-\sin ^{-1}(a x)+\log (x) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcTanh[a*x])/x,x]

[Out]

(-4*Sqrt[1 - a^2*x^2])/(-1 + a*x) - ArcSin[a*x] + Log[x] - Log[1 + Sqrt[1 - a^2*x^2]]

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 82, normalized size = 1.71 \[ \frac {4 \, a x + 2 \, {\left (a x - 1\right )} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + {\left (a x - 1\right )} \log \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{x}\right ) - 4 \, \sqrt {-a^{2} x^{2} + 1} - 4}{a x - 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/x,x, algorithm="fricas")

[Out]

(4*a*x + 2*(a*x - 1)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + (a*x - 1)*log((sqrt(-a^2*x^2 + 1) - 1)/x) - 4*sq
rt(-a^2*x^2 + 1) - 4)/(a*x - 1)

________________________________________________________________________________________

giac [B]  time = 0.22, size = 87, normalized size = 1.81 \[ -\frac {a \arcsin \left (a x\right ) \mathrm {sgn}\relax (a)}{{\left | a \right |}} - \frac {a \log \left (\frac {{\left | -2 \, \sqrt {-a^{2} x^{2} + 1} {\left | a \right |} - 2 \, a \right |}}{2 \, a^{2} {\left | x \right |}}\right )}{{\left | a \right |}} + \frac {8 \, a}{{\left (\frac {\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a}{a^{2} x} - 1\right )} {\left | a \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/x,x, algorithm="giac")

[Out]

-a*arcsin(a*x)*sgn(a)/abs(a) - a*log(1/2*abs(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*abs(x)))/abs(a) + 8*a/((
(sqrt(-a^2*x^2 + 1)*abs(a) + a)/(a^2*x) - 1)*abs(a))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 75, normalized size = 1.56 \[ \frac {4 a x}{\sqrt {-a^{2} x^{2}+1}}-\frac {a \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{\sqrt {a^{2}}}+\frac {4}{\sqrt {-a^{2} x^{2}+1}}-\arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)/x,x)

[Out]

4*a*x/(-a^2*x^2+1)^(1/2)-a/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2))+4/(-a^2*x^2+1)^(1/2)-arctanh(1
/(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 65, normalized size = 1.35 \[ \frac {4 \, a x}{\sqrt {-a^{2} x^{2} + 1}} + \frac {4}{\sqrt {-a^{2} x^{2} + 1}} - \arcsin \left (a x\right ) - \log \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac {2}{{\left | x \right |}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/x,x, algorithm="maxima")

[Out]

4*a*x/sqrt(-a^2*x^2 + 1) + 4/sqrt(-a^2*x^2 + 1) - arcsin(a*x) - log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x))

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 82, normalized size = 1.71 \[ \frac {4\,a\,\sqrt {1-a^2\,x^2}}{\left (x\,\sqrt {-a^2}-\frac {\sqrt {-a^2}}{a}\right )\,\sqrt {-a^2}}-\frac {a\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{\sqrt {-a^2}}-\mathrm {atanh}\left (\sqrt {1-a^2\,x^2}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + 1)^3/(x*(1 - a^2*x^2)^(3/2)),x)

[Out]

(4*a*(1 - a^2*x^2)^(1/2))/((x*(-a^2)^(1/2) - (-a^2)^(1/2)/a)*(-a^2)^(1/2)) - (a*asinh(x*(-a^2)^(1/2)))/(-a^2)^
(1/2) - atanh((1 - a^2*x^2)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a x + 1\right )^{3}}{x \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)/x,x)

[Out]

Integral((a*x + 1)**3/(x*(-(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________