3.213 \(\int \frac {e^{-2 \tanh ^{-1}(a x)}}{(c-a c x)^3} \, dx\)

Optimal. Leaf size=33 \[ \frac {1}{2 a c^3 (1-a x)}+\frac {\tanh ^{-1}(a x)}{2 a c^3} \]

[Out]

1/2/a/c^3/(-a*x+1)+1/2*arctanh(a*x)/a/c^3

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6129, 44, 207} \[ \frac {1}{2 a c^3 (1-a x)}+\frac {\tanh ^{-1}(a x)}{2 a c^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(2*ArcTanh[a*x])*(c - a*c*x)^3),x]

[Out]

1/(2*a*c^3*(1 - a*x)) + ArcTanh[a*x]/(2*a*c^3)

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{-2 \tanh ^{-1}(a x)}}{(c-a c x)^3} \, dx &=\frac {\int \frac {1}{(1-a x)^2 (1+a x)} \, dx}{c^3}\\ &=\frac {\int \left (\frac {1}{2 (-1+a x)^2}-\frac {1}{2 \left (-1+a^2 x^2\right )}\right ) \, dx}{c^3}\\ &=\frac {1}{2 a c^3 (1-a x)}-\frac {\int \frac {1}{-1+a^2 x^2} \, dx}{2 c^3}\\ &=\frac {1}{2 a c^3 (1-a x)}+\frac {\tanh ^{-1}(a x)}{2 a c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 31, normalized size = 0.94 \[ \frac {\frac {1}{2 a (1-a x)}+\frac {\tanh ^{-1}(a x)}{2 a}}{c^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(2*ArcTanh[a*x])*(c - a*c*x)^3),x]

[Out]

(1/(2*a*(1 - a*x)) + ArcTanh[a*x]/(2*a))/c^3

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 46, normalized size = 1.39 \[ \frac {{\left (a x - 1\right )} \log \left (a x + 1\right ) - {\left (a x - 1\right )} \log \left (a x - 1\right ) - 2}{4 \, {\left (a^{2} c^{3} x - a c^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^2*(-a^2*x^2+1)/(-a*c*x+c)^3,x, algorithm="fricas")

[Out]

1/4*((a*x - 1)*log(a*x + 1) - (a*x - 1)*log(a*x - 1) - 2)/(a^2*c^3*x - a*c^3)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 43, normalized size = 1.30 \[ -\frac {\log \left ({\left | -\frac {2}{a x + 1} + 1 \right |}\right )}{4 \, a c^{3}} + \frac {1}{4 \, a c^{3} {\left (\frac {2}{a x + 1} - 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^2*(-a^2*x^2+1)/(-a*c*x+c)^3,x, algorithm="giac")

[Out]

-1/4*log(abs(-2/(a*x + 1) + 1))/(a*c^3) + 1/4/(a*c^3*(2/(a*x + 1) - 1))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 45, normalized size = 1.36 \[ -\frac {1}{2 c^{3} a \left (a x -1\right )}-\frac {\ln \left (a x -1\right )}{4 c^{3} a}+\frac {\ln \left (a x +1\right )}{4 a \,c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^2*(-a^2*x^2+1)/(-a*c*x+c)^3,x)

[Out]

-1/2/c^3/a/(a*x-1)-1/4/c^3/a*ln(a*x-1)+1/4*ln(a*x+1)/a/c^3

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 48, normalized size = 1.45 \[ -\frac {1}{2 \, {\left (a^{2} c^{3} x - a c^{3}\right )}} + \frac {\log \left (a x + 1\right )}{4 \, a c^{3}} - \frac {\log \left (a x - 1\right )}{4 \, a c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^2*(-a^2*x^2+1)/(-a*c*x+c)^3,x, algorithm="maxima")

[Out]

-1/2/(a^2*c^3*x - a*c^3) + 1/4*log(a*x + 1)/(a*c^3) - 1/4*log(a*x - 1)/(a*c^3)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 31, normalized size = 0.94 \[ \frac {1}{2\,a\,\left (c^3-a\,c^3\,x\right )}+\frac {\mathrm {atanh}\left (a\,x\right )}{2\,a\,c^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(a^2*x^2 - 1)/((c - a*c*x)^3*(a*x + 1)^2),x)

[Out]

1/(2*a*(c^3 - a*c^3*x)) + atanh(a*x)/(2*a*c^3)

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 39, normalized size = 1.18 \[ - \frac {1}{2 a^{2} c^{3} x - 2 a c^{3}} + \frac {- \frac {\log {\left (x - \frac {1}{a} \right )}}{4} + \frac {\log {\left (x + \frac {1}{a} \right )}}{4}}{a c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**2*(-a**2*x**2+1)/(-a*c*x+c)**3,x)

[Out]

-1/(2*a**2*c**3*x - 2*a*c**3) + (-log(x - 1/a)/4 + log(x + 1/a)/4)/(a*c**3)

________________________________________________________________________________________