3.203 \(\int \frac {e^{-\tanh ^{-1}(a x)}}{(c-a c x)^3} \, dx\)

Optimal. Leaf size=65 \[ \frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)}+\frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)^2} \]

[Out]

1/3*(-a^2*x^2+1)^(1/2)/a/c^3/(-a*x+1)^2+1/3*(-a^2*x^2+1)^(1/2)/a/c^3/(-a*x+1)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6127, 659, 651} \[ \frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)}+\frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^ArcTanh[a*x]*(c - a*c*x)^3),x]

[Out]

Sqrt[1 - a^2*x^2]/(3*a*c^3*(1 - a*x)^2) + Sqrt[1 - a^2*x^2]/(3*a*c^3*(1 - a*x))

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 659

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*c*d*(m + p + 1)), x] + Dist[Simplify[m + 2*p + 2]/(2*d*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p,
 x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2
], 0]

Rule 6127

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{-\tanh ^{-1}(a x)}}{(c-a c x)^3} \, dx &=\frac {\int \frac {1}{(c-a c x)^2 \sqrt {1-a^2 x^2}} \, dx}{c}\\ &=\frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)^2}+\frac {\int \frac {1}{(c-a c x) \sqrt {1-a^2 x^2}} \, dx}{3 c^2}\\ &=\frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)^2}+\frac {\sqrt {1-a^2 x^2}}{3 a c^3 (1-a x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 34, normalized size = 0.52 \[ -\frac {(a x-2) \sqrt {a x+1}}{3 a c^3 (1-a x)^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(E^ArcTanh[a*x]*(c - a*c*x)^3),x]

[Out]

-1/3*((-2 + a*x)*Sqrt[1 + a*x])/(a*c^3*(1 - a*x)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 62, normalized size = 0.95 \[ \frac {2 \, a^{2} x^{2} - 4 \, a x - \sqrt {-a^{2} x^{2} + 1} {\left (a x - 2\right )} + 2}{3 \, {\left (a^{3} c^{3} x^{2} - 2 \, a^{2} c^{3} x + a c^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^3,x, algorithm="fricas")

[Out]

1/3*(2*a^2*x^2 - 4*a*x - sqrt(-a^2*x^2 + 1)*(a*x - 2) + 2)/(a^3*c^3*x^2 - 2*a^2*c^3*x + a*c^3)

________________________________________________________________________________________

giac [A]  time = 0.41, size = 91, normalized size = 1.40 \[ -\frac {2 \, {\left (\frac {3 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}}{a^{2} x} - \frac {3 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2}}{a^{4} x^{2}} - 2\right )}}{3 \, c^{3} {\left (\frac {\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a}{a^{2} x} - 1\right )}^{3} {\left | a \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^3,x, algorithm="giac")

[Out]

-2/3*(3*(sqrt(-a^2*x^2 + 1)*abs(a) + a)/(a^2*x) - 3*(sqrt(-a^2*x^2 + 1)*abs(a) + a)^2/(a^4*x^2) - 2)/(c^3*((sq
rt(-a^2*x^2 + 1)*abs(a) + a)/(a^2*x) - 1)^3*abs(a))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 33, normalized size = 0.51 \[ -\frac {\sqrt {-a^{2} x^{2}+1}\, \left (a x -2\right )}{3 \left (a x -1\right )^{2} c^{3} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^3,x)

[Out]

-1/3*(-a^2*x^2+1)^(1/2)*(a*x-2)/(a*x-1)^2/c^3/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {\sqrt {-a^{2} x^{2} + 1}}{{\left (a c x - c\right )}^{3} {\left (a x + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^3,x, algorithm="maxima")

[Out]

-integrate(sqrt(-a^2*x^2 + 1)/((a*c*x - c)^3*(a*x + 1)), x)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 32, normalized size = 0.49 \[ -\frac {\sqrt {1-a^2\,x^2}\,\left (a\,x-2\right )}{3\,a\,c^3\,{\left (a\,x-1\right )}^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^2*x^2)^(1/2)/((c - a*c*x)^3*(a*x + 1)),x)

[Out]

-((1 - a^2*x^2)^(1/2)*(a*x - 2))/(3*a*c^3*(a*x - 1)^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \frac {\int \frac {\sqrt {- a^{2} x^{2} + 1}}{a^{4} x^{4} - 2 a^{3} x^{3} + 2 a x - 1}\, dx}{c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)*(-a**2*x**2+1)**(1/2)/(-a*c*x+c)**3,x)

[Out]

-Integral(sqrt(-a**2*x**2 + 1)/(a**4*x**4 - 2*a**3*x**3 + 2*a*x - 1), x)/c**3

________________________________________________________________________________________