3.178 \(\int e^{3 \tanh ^{-1}(a x)} (c-a c x)^4 \, dx\)

Optimal. Leaf size=83 \[ \frac {c^4 \left (1-a^2 x^2\right )^{5/2}}{5 a}+\frac {1}{4} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {3}{8} c^4 x \sqrt {1-a^2 x^2}+\frac {3 c^4 \sin ^{-1}(a x)}{8 a} \]

[Out]

1/4*c^4*x*(-a^2*x^2+1)^(3/2)+1/5*c^4*(-a^2*x^2+1)^(5/2)/a+3/8*c^4*arcsin(a*x)/a+3/8*c^4*x*(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6127, 641, 195, 216} \[ \frac {c^4 \left (1-a^2 x^2\right )^{5/2}}{5 a}+\frac {1}{4} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {3}{8} c^4 x \sqrt {1-a^2 x^2}+\frac {3 c^4 \sin ^{-1}(a x)}{8 a} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*(c - a*c*x)^4,x]

[Out]

(3*c^4*x*Sqrt[1 - a^2*x^2])/8 + (c^4*x*(1 - a^2*x^2)^(3/2))/4 + (c^4*(1 - a^2*x^2)^(5/2))/(5*a) + (3*c^4*ArcSi
n[a*x])/(8*a)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 6127

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int e^{3 \tanh ^{-1}(a x)} (c-a c x)^4 \, dx &=c^3 \int (c-a c x) \left (1-a^2 x^2\right )^{3/2} \, dx\\ &=\frac {c^4 \left (1-a^2 x^2\right )^{5/2}}{5 a}+c^4 \int \left (1-a^2 x^2\right )^{3/2} \, dx\\ &=\frac {1}{4} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {c^4 \left (1-a^2 x^2\right )^{5/2}}{5 a}+\frac {1}{4} \left (3 c^4\right ) \int \sqrt {1-a^2 x^2} \, dx\\ &=\frac {3}{8} c^4 x \sqrt {1-a^2 x^2}+\frac {1}{4} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {c^4 \left (1-a^2 x^2\right )^{5/2}}{5 a}+\frac {1}{8} \left (3 c^4\right ) \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx\\ &=\frac {3}{8} c^4 x \sqrt {1-a^2 x^2}+\frac {1}{4} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {c^4 \left (1-a^2 x^2\right )^{5/2}}{5 a}+\frac {3 c^4 \sin ^{-1}(a x)}{8 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 75, normalized size = 0.90 \[ \frac {c^4 \left (\sqrt {1-a^2 x^2} \left (8 a^4 x^4-10 a^3 x^3-16 a^2 x^2+25 a x+8\right )-30 \sin ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )\right )}{40 a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcTanh[a*x])*(c - a*c*x)^4,x]

[Out]

(c^4*(Sqrt[1 - a^2*x^2]*(8 + 25*a*x - 16*a^2*x^2 - 10*a^3*x^3 + 8*a^4*x^4) - 30*ArcSin[Sqrt[1 - a*x]/Sqrt[2]])
)/(40*a)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 93, normalized size = 1.12 \[ -\frac {30 \, c^{4} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) - {\left (8 \, a^{4} c^{4} x^{4} - 10 \, a^{3} c^{4} x^{3} - 16 \, a^{2} c^{4} x^{2} + 25 \, a c^{4} x + 8 \, c^{4}\right )} \sqrt {-a^{2} x^{2} + 1}}{40 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^4,x, algorithm="fricas")

[Out]

-1/40*(30*c^4*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) - (8*a^4*c^4*x^4 - 10*a^3*c^4*x^3 - 16*a^2*c^4*x^2 + 25*a
*c^4*x + 8*c^4)*sqrt(-a^2*x^2 + 1))/a

________________________________________________________________________________________

giac [A]  time = 0.36, size = 78, normalized size = 0.94 \[ \frac {3 \, c^{4} \arcsin \left (a x\right ) \mathrm {sgn}\relax (a)}{8 \, {\left | a \right |}} + \frac {1}{40} \, \sqrt {-a^{2} x^{2} + 1} {\left (\frac {8 \, c^{4}}{a} + {\left (25 \, c^{4} - 2 \, {\left (8 \, a c^{4} - {\left (4 \, a^{3} c^{4} x - 5 \, a^{2} c^{4}\right )} x\right )} x\right )} x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^4,x, algorithm="giac")

[Out]

3/8*c^4*arcsin(a*x)*sgn(a)/abs(a) + 1/40*sqrt(-a^2*x^2 + 1)*(8*c^4/a + (25*c^4 - 2*(8*a*c^4 - (4*a^3*c^4*x - 5
*a^2*c^4)*x)*x)*x)

________________________________________________________________________________________

maple [B]  time = 0.07, size = 183, normalized size = 2.20 \[ -\frac {c^{4} a^{5} x^{6}}{5 \sqrt {-a^{2} x^{2}+1}}+\frac {3 c^{4} a^{3} x^{4}}{5 \sqrt {-a^{2} x^{2}+1}}-\frac {3 c^{4} a \,x^{2}}{5 \sqrt {-a^{2} x^{2}+1}}+\frac {c^{4}}{5 a \sqrt {-a^{2} x^{2}+1}}+\frac {c^{4} a^{4} x^{5}}{4 \sqrt {-a^{2} x^{2}+1}}-\frac {7 c^{4} a^{2} x^{3}}{8 \sqrt {-a^{2} x^{2}+1}}+\frac {5 c^{4} x}{8 \sqrt {-a^{2} x^{2}+1}}+\frac {3 c^{4} \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{8 \sqrt {a^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^4,x)

[Out]

-1/5*c^4*a^5*x^6/(-a^2*x^2+1)^(1/2)+3/5*c^4*a^3*x^4/(-a^2*x^2+1)^(1/2)-3/5*c^4*a*x^2/(-a^2*x^2+1)^(1/2)+1/5*c^
4/a/(-a^2*x^2+1)^(1/2)+1/4*c^4*a^4*x^5/(-a^2*x^2+1)^(1/2)-7/8*c^4*a^2*x^3/(-a^2*x^2+1)^(1/2)+5/8*c^4*x/(-a^2*x
^2+1)^(1/2)+3/8*c^4/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [B]  time = 0.42, size = 164, normalized size = 1.98 \[ -\frac {a^{5} c^{4} x^{6}}{5 \, \sqrt {-a^{2} x^{2} + 1}} + \frac {a^{4} c^{4} x^{5}}{4 \, \sqrt {-a^{2} x^{2} + 1}} + \frac {3 \, a^{3} c^{4} x^{4}}{5 \, \sqrt {-a^{2} x^{2} + 1}} - \frac {7 \, a^{2} c^{4} x^{3}}{8 \, \sqrt {-a^{2} x^{2} + 1}} - \frac {3 \, a c^{4} x^{2}}{5 \, \sqrt {-a^{2} x^{2} + 1}} + \frac {5 \, c^{4} x}{8 \, \sqrt {-a^{2} x^{2} + 1}} + \frac {3 \, c^{4} \arcsin \left (a x\right )}{8 \, a} + \frac {c^{4}}{5 \, \sqrt {-a^{2} x^{2} + 1} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^4,x, algorithm="maxima")

[Out]

-1/5*a^5*c^4*x^6/sqrt(-a^2*x^2 + 1) + 1/4*a^4*c^4*x^5/sqrt(-a^2*x^2 + 1) + 3/5*a^3*c^4*x^4/sqrt(-a^2*x^2 + 1)
- 7/8*a^2*c^4*x^3/sqrt(-a^2*x^2 + 1) - 3/5*a*c^4*x^2/sqrt(-a^2*x^2 + 1) + 5/8*c^4*x/sqrt(-a^2*x^2 + 1) + 3/8*c
^4*arcsin(a*x)/a + 1/5*c^4/(sqrt(-a^2*x^2 + 1)*a)

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 128, normalized size = 1.54 \[ \frac {5\,c^4\,x\,\sqrt {1-a^2\,x^2}}{8}+\frac {3\,c^4\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{8\,\sqrt {-a^2}}+\frac {c^4\,\sqrt {1-a^2\,x^2}}{5\,a}-\frac {2\,a\,c^4\,x^2\,\sqrt {1-a^2\,x^2}}{5}-\frac {a^2\,c^4\,x^3\,\sqrt {1-a^2\,x^2}}{4}+\frac {a^3\,c^4\,x^4\,\sqrt {1-a^2\,x^2}}{5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - a*c*x)^4*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2),x)

[Out]

(5*c^4*x*(1 - a^2*x^2)^(1/2))/8 + (3*c^4*asinh(x*(-a^2)^(1/2)))/(8*(-a^2)^(1/2)) + (c^4*(1 - a^2*x^2)^(1/2))/(
5*a) - (2*a*c^4*x^2*(1 - a^2*x^2)^(1/2))/5 - (a^2*c^4*x^3*(1 - a^2*x^2)^(1/2))/4 + (a^3*c^4*x^4*(1 - a^2*x^2)^
(1/2))/5

________________________________________________________________________________________

sympy [A]  time = 22.99, size = 459, normalized size = 5.53 \[ - a^{5} c^{4} \left (\begin {cases} - \frac {x^{4} \sqrt {- a^{2} x^{2} + 1}}{5 a^{2}} - \frac {4 x^{2} \sqrt {- a^{2} x^{2} + 1}}{15 a^{4}} - \frac {8 \sqrt {- a^{2} x^{2} + 1}}{15 a^{6}} & \text {for}\: a \neq 0 \\\frac {x^{6}}{6} & \text {otherwise} \end {cases}\right ) + a^{4} c^{4} \left (\begin {cases} - \frac {i x^{5}}{4 \sqrt {a^{2} x^{2} - 1}} - \frac {i x^{3}}{8 a^{2} \sqrt {a^{2} x^{2} - 1}} + \frac {3 i x}{8 a^{4} \sqrt {a^{2} x^{2} - 1}} - \frac {3 i \operatorname {acosh}{\left (a x \right )}}{8 a^{5}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{5}}{4 \sqrt {- a^{2} x^{2} + 1}} + \frac {x^{3}}{8 a^{2} \sqrt {- a^{2} x^{2} + 1}} - \frac {3 x}{8 a^{4} \sqrt {- a^{2} x^{2} + 1}} + \frac {3 \operatorname {asin}{\left (a x \right )}}{8 a^{5}} & \text {otherwise} \end {cases}\right ) + 2 a^{3} c^{4} \left (\begin {cases} - \frac {x^{2} \sqrt {- a^{2} x^{2} + 1}}{3 a^{2}} - \frac {2 \sqrt {- a^{2} x^{2} + 1}}{3 a^{4}} & \text {for}\: a \neq 0 \\\frac {x^{4}}{4} & \text {otherwise} \end {cases}\right ) - 2 a^{2} c^{4} \left (\begin {cases} - \frac {i x \sqrt {a^{2} x^{2} - 1}}{2 a^{2}} - \frac {i \operatorname {acosh}{\left (a x \right )}}{2 a^{3}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{3}}{2 \sqrt {- a^{2} x^{2} + 1}} - \frac {x}{2 a^{2} \sqrt {- a^{2} x^{2} + 1}} + \frac {\operatorname {asin}{\left (a x \right )}}{2 a^{3}} & \text {otherwise} \end {cases}\right ) - a c^{4} \left (\begin {cases} \frac {x^{2}}{2} & \text {for}\: a^{2} = 0 \\- \frac {\sqrt {- a^{2} x^{2} + 1}}{a^{2}} & \text {otherwise} \end {cases}\right ) + c^{4} \left (\begin {cases} \sqrt {\frac {1}{a^{2}}} \operatorname {asin}{\left (x \sqrt {a^{2}} \right )} & \text {for}\: a^{2} > 0 \\\sqrt {- \frac {1}{a^{2}}} \operatorname {asinh}{\left (x \sqrt {- a^{2}} \right )} & \text {for}\: a^{2} < 0 \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(-a*c*x+c)**4,x)

[Out]

-a**5*c**4*Piecewise((-x**4*sqrt(-a**2*x**2 + 1)/(5*a**2) - 4*x**2*sqrt(-a**2*x**2 + 1)/(15*a**4) - 8*sqrt(-a*
*2*x**2 + 1)/(15*a**6), Ne(a, 0)), (x**6/6, True)) + a**4*c**4*Piecewise((-I*x**5/(4*sqrt(a**2*x**2 - 1)) - I*
x**3/(8*a**2*sqrt(a**2*x**2 - 1)) + 3*I*x/(8*a**4*sqrt(a**2*x**2 - 1)) - 3*I*acosh(a*x)/(8*a**5), Abs(a**2*x**
2) > 1), (x**5/(4*sqrt(-a**2*x**2 + 1)) + x**3/(8*a**2*sqrt(-a**2*x**2 + 1)) - 3*x/(8*a**4*sqrt(-a**2*x**2 + 1
)) + 3*asin(a*x)/(8*a**5), True)) + 2*a**3*c**4*Piecewise((-x**2*sqrt(-a**2*x**2 + 1)/(3*a**2) - 2*sqrt(-a**2*
x**2 + 1)/(3*a**4), Ne(a, 0)), (x**4/4, True)) - 2*a**2*c**4*Piecewise((-I*x*sqrt(a**2*x**2 - 1)/(2*a**2) - I*
acosh(a*x)/(2*a**3), Abs(a**2*x**2) > 1), (x**3/(2*sqrt(-a**2*x**2 + 1)) - x/(2*a**2*sqrt(-a**2*x**2 + 1)) + a
sin(a*x)/(2*a**3), True)) - a*c**4*Piecewise((x**2/2, Eq(a**2, 0)), (-sqrt(-a**2*x**2 + 1)/a**2, True)) + c**4
*Piecewise((sqrt(a**(-2))*asin(x*sqrt(a**2)), a**2 > 0), (sqrt(-1/a**2)*asinh(x*sqrt(-a**2)), a**2 < 0))

________________________________________________________________________________________