3.146 \(\int e^{-2 \tanh ^{-1}(a x)} x^m \, dx\)

Optimal. Leaf size=37 \[ \frac {2 x^{m+1} \, _2F_1(1,m+1;m+2;-a x)}{m+1}-\frac {x^{m+1}}{m+1} \]

[Out]

-x^(1+m)/(1+m)+2*x^(1+m)*hypergeom([1, 1+m],[2+m],-a*x)/(1+m)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6126, 80, 64} \[ \frac {2 x^{m+1} \, _2F_1(1,m+1;m+2;-a x)}{m+1}-\frac {x^{m+1}}{m+1} \]

Antiderivative was successfully verified.

[In]

Int[x^m/E^(2*ArcTanh[a*x]),x]

[Out]

-(x^(1 + m)/(1 + m)) + (2*x^(1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, -(a*x)])/(1 + m)

Rule 64

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c^n*(b*x)^(m + 1)*Hypergeometric2F1[-n, m +
 1, m + 2, -((d*x)/c)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[
c, 0] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-(d/(b*c)), 0])))

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int e^{-2 \tanh ^{-1}(a x)} x^m \, dx &=\int \frac {x^m (1-a x)}{1+a x} \, dx\\ &=-\frac {x^{1+m}}{1+m}+2 \int \frac {x^m}{1+a x} \, dx\\ &=-\frac {x^{1+m}}{1+m}+\frac {2 x^{1+m} \, _2F_1(1,1+m;2+m;-a x)}{1+m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 27, normalized size = 0.73 \[ \frac {x^{m+1} (2 \, _2F_1(1,m+1;m+2;-a x)-1)}{m+1} \]

Antiderivative was successfully verified.

[In]

Integrate[x^m/E^(2*ArcTanh[a*x]),x]

[Out]

(x^(1 + m)*(-1 + 2*Hypergeometric2F1[1, 1 + m, 2 + m, -(a*x)]))/(1 + m)

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a x - 1\right )} x^{m}}{a x + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-(a*x - 1)*x^m/(a*x + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {{\left (a^{2} x^{2} - 1\right )} x^{m}}{{\left (a x + 1\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="giac")

[Out]

integrate(-(a^2*x^2 - 1)*x^m/(a*x + 1)^2, x)

________________________________________________________________________________________

maple [C]  time = 0.27, size = 126, normalized size = 3.41 \[ -a^{-1-m} \left (\frac {x^{m} a^{m} \left (a^{2} m \,x^{2}-a m x -2 a x -m^{2}-3 m -2\right )}{\left (1+m \right ) m \left (a x +1\right )}+x^{m} a^{m} \left (2+m \right ) \Phi \left (-a x , 1, m\right )\right )+a^{-1-m} \left (\frac {x^{m} a^{m} \left (-1-m \right )}{\left (1+m \right ) \left (a x +1\right )}+x^{m} a^{m} m \Phi \left (-a x , 1, m\right )\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/(a*x+1)^2*(-a^2*x^2+1),x)

[Out]

-a^(-1-m)*(x^m*a^m*(a^2*m*x^2-a*m*x-2*a*x-m^2-3*m-2)/(1+m)/m/(a*x+1)+x^m*a^m*(2+m)*LerchPhi(-a*x,1,m))+a^(-1-m
)*(1/(1+m)*x^m*a^m*(-1-m)/(a*x+1)+x^m*a^m*m*LerchPhi(-a*x,1,m))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {{\left (a^{2} x^{2} - 1\right )} x^{m}}{{\left (a x + 1\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/(a*x+1)^2*(-a^2*x^2+1),x, algorithm="maxima")

[Out]

-integrate((a^2*x^2 - 1)*x^m/(a*x + 1)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ -\int \frac {x^m\,\left (a^2\,x^2-1\right )}{{\left (a\,x+1\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^m*(a^2*x^2 - 1))/(a*x + 1)^2,x)

[Out]

-int((x^m*(a^2*x^2 - 1))/(a*x + 1)^2, x)

________________________________________________________________________________________

sympy [C]  time = 3.17, size = 119, normalized size = 3.22 \[ - \frac {a m x^{2} x^{m} \Phi \left (a x e^{i \pi }, 1, m + 2\right ) \Gamma \left (m + 2\right )}{\Gamma \left (m + 3\right )} - \frac {2 a x^{2} x^{m} \Phi \left (a x e^{i \pi }, 1, m + 2\right ) \Gamma \left (m + 2\right )}{\Gamma \left (m + 3\right )} + \frac {m x x^{m} \Phi \left (a x e^{i \pi }, 1, m + 1\right ) \Gamma \left (m + 1\right )}{\Gamma \left (m + 2\right )} + \frac {x x^{m} \Phi \left (a x e^{i \pi }, 1, m + 1\right ) \Gamma \left (m + 1\right )}{\Gamma \left (m + 2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m/(a*x+1)**2*(-a**2*x**2+1),x)

[Out]

-a*m*x**2*x**m*lerchphi(a*x*exp_polar(I*pi), 1, m + 2)*gamma(m + 2)/gamma(m + 3) - 2*a*x**2*x**m*lerchphi(a*x*
exp_polar(I*pi), 1, m + 2)*gamma(m + 2)/gamma(m + 3) + m*x*x**m*lerchphi(a*x*exp_polar(I*pi), 1, m + 1)*gamma(
m + 1)/gamma(m + 2) + x*x**m*lerchphi(a*x*exp_polar(I*pi), 1, m + 1)*gamma(m + 1)/gamma(m + 2)

________________________________________________________________________________________