3.144 \(\int e^{\tanh ^{-1}(a x)} x^m \, dx\)

Optimal. Leaf size=74 \[ \frac {x^{m+1} \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{m+1}+\frac {a x^{m+2} \, _2F_1\left (\frac {1}{2},\frac {m+2}{2};\frac {m+4}{2};a^2 x^2\right )}{m+2} \]

[Out]

x^(1+m)*hypergeom([1/2, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)+a*x^(2+m)*hypergeom([1/2, 1+1/2*m],[2+1/2*m],a^2
*x^2)/(2+m)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6124, 808, 364} \[ \frac {x^{m+1} \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{m+1}+\frac {a x^{m+2} \, _2F_1\left (\frac {1}{2},\frac {m+2}{2};\frac {m+4}{2};a^2 x^2\right )}{m+2} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]*x^m,x]

[Out]

(x^(1 + m)*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(1 + m) + (a*x^(2 + m)*Hypergeometric2F1[1/2
, (2 + m)/2, (4 + m)/2, a^2*x^2])/(2 + m)

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 6124

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/
2)*Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(a x)} x^m \, dx &=\int \frac {x^m (1+a x)}{\sqrt {1-a^2 x^2}} \, dx\\ &=a \int \frac {x^{1+m}}{\sqrt {1-a^2 x^2}} \, dx+\int \frac {x^m}{\sqrt {1-a^2 x^2}} \, dx\\ &=\frac {x^{1+m} \, _2F_1\left (\frac {1}{2},\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{1+m}+\frac {a x^{2+m} \, _2F_1\left (\frac {1}{2},\frac {2+m}{2};\frac {4+m}{2};a^2 x^2\right )}{2+m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 70, normalized size = 0.95 \[ -\frac {\sqrt {-a x-1} \sqrt {1-a x} x^{m+1} F_1\left (m+1;-\frac {1}{2},\frac {1}{2};m+2;-a x,a x\right )}{(m+1) \sqrt {a x-1} \sqrt {a x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]*x^m,x]

[Out]

-((x^(1 + m)*Sqrt[-1 - a*x]*Sqrt[1 - a*x]*AppellF1[1 + m, -1/2, 1/2, 2 + m, -(a*x), a*x])/((1 + m)*Sqrt[-1 + a
*x]*Sqrt[1 + a*x]))

________________________________________________________________________________________

fricas [F]  time = 0.54, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-a^{2} x^{2} + 1} x^{m}}{a x - 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m,x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*x^2 + 1)*x^m/(a*x - 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )} x^{m}}{\sqrt {-a^{2} x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m,x, algorithm="giac")

[Out]

integrate((a*x + 1)*x^m/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

maple [A]  time = 0.24, size = 67, normalized size = 0.91 \[ \frac {x^{1+m} \hypergeom \left (\left [\frac {1}{2}, \frac {1}{2}+\frac {m}{2}\right ], \left [\frac {3}{2}+\frac {m}{2}\right ], a^{2} x^{2}\right )}{1+m}+\frac {a \,x^{2+m} \hypergeom \left (\left [\frac {1}{2}, 1+\frac {m}{2}\right ], \left [2+\frac {m}{2}\right ], a^{2} x^{2}\right )}{2+m} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m,x)

[Out]

x^(1+m)*hypergeom([1/2,1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/(1+m)+a*x^(2+m)*hypergeom([1/2,1+1/2*m],[2+1/2*m],a^2*x
^2)/(2+m)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )} x^{m}}{\sqrt {-a^{2} x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m,x, algorithm="maxima")

[Out]

integrate((a*x + 1)*x^m/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^m\,\left (a\,x+1\right )}{\sqrt {1-a^2\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^m*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)

[Out]

int((x^m*(a*x + 1))/(1 - a^2*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [C]  time = 3.22, size = 97, normalized size = 1.31 \[ \frac {a x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + 1 \\ \frac {m}{2} + 2 \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + 2\right )} + \frac {x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**m,x)

[Out]

a*x**2*x**m*gamma(m/2 + 1)*hyper((1/2, m/2 + 1), (m/2 + 2,), a**2*x**2*exp_polar(2*I*pi))/(2*gamma(m/2 + 2)) +
 x*x**m*gamma(m/2 + 1/2)*hyper((1/2, m/2 + 1/2), (m/2 + 3/2,), a**2*x**2*exp_polar(2*I*pi))/(2*gamma(m/2 + 3/2
))

________________________________________________________________________________________