3.1345 \(\int \frac {e^{n \tanh ^{-1}(a x)}}{x (c-a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=243 \[ \frac {2 \sqrt {1-a^2 x^2} (a x+1)^{\frac {n-1}{2}} (1-a x)^{\frac {1-n}{2}} \, _2F_1\left (1,\frac {n-1}{2};\frac {n+1}{2};\frac {a x+1}{1-a x}\right )}{c (1-n) \sqrt {c-a^2 c x^2}}-\frac {(n+2) \sqrt {1-a^2 x^2} (a x+1)^{\frac {n-1}{2}} (1-a x)^{\frac {1-n}{2}}}{c \left (1-n^2\right ) \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} (a x+1)^{\frac {n-1}{2}} (1-a x)^{\frac {1}{2} (-n-1)}}{c (n+1) \sqrt {c-a^2 c x^2}} \]

[Out]

(-a*x+1)^(-1/2-1/2*n)*(a*x+1)^(-1/2+1/2*n)*(-a^2*x^2+1)^(1/2)/c/(1+n)/(-a^2*c*x^2+c)^(1/2)-(2+n)*(-a*x+1)^(1/2
-1/2*n)*(a*x+1)^(-1/2+1/2*n)*(-a^2*x^2+1)^(1/2)/c/(-n^2+1)/(-a^2*c*x^2+c)^(1/2)+2*(-a*x+1)^(1/2-1/2*n)*(a*x+1)
^(-1/2+1/2*n)*hypergeom([1, -1/2+1/2*n],[1/2+1/2*n],(a*x+1)/(-a*x+1))*(-a^2*x^2+1)^(1/2)/c/(1-n)/(-a^2*c*x^2+c
)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 247, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6153, 6150, 129, 155, 12, 131} \[ -\frac {2 \sqrt {1-a^2 x^2} (a x+1)^{\frac {n-3}{2}} (1-a x)^{\frac {3-n}{2}} \, _2F_1\left (1,\frac {3-n}{2};\frac {5-n}{2};\frac {1-a x}{a x+1}\right )}{c (3-n) \sqrt {c-a^2 c x^2}}-\frac {(n+2) \sqrt {1-a^2 x^2} (a x+1)^{\frac {n-1}{2}} (1-a x)^{\frac {1-n}{2}}}{c \left (1-n^2\right ) \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} (a x+1)^{\frac {n-1}{2}} (1-a x)^{\frac {1}{2} (-n-1)}}{c (n+1) \sqrt {c-a^2 c x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Int[E^(n*ArcTanh[a*x])/(x*(c - a^2*c*x^2)^(3/2)),x]

[Out]

((1 - a*x)^((-1 - n)/2)*(1 + a*x)^((-1 + n)/2)*Sqrt[1 - a^2*x^2])/(c*(1 + n)*Sqrt[c - a^2*c*x^2]) - ((2 + n)*(
1 - a*x)^((1 - n)/2)*(1 + a*x)^((-1 + n)/2)*Sqrt[1 - a^2*x^2])/(c*(1 - n^2)*Sqrt[c - a^2*c*x^2]) - (2*(1 - a*x
)^((3 - n)/2)*(1 + a*x)^((-3 + n)/2)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[1, (3 - n)/2, (5 - n)/2, (1 - a*x)/(1
 + a*x)])/(c*(3 - n)*Sqrt[c - a^2*c*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 129

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && ILtQ[m + n
 + p + 2, 0] && NeQ[m, -1] && (SumSimplerQ[m, 1] || ( !(NeQ[n, -1] && SumSimplerQ[n, 1]) &&  !(NeQ[p, -1] && S
umSimplerQ[p, 1])))

Rule 131

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((b*c -
a*d)^n*(a + b*x)^(m + 1)*Hypergeometric2F1[m + 1, -n, m + 2, -(((d*e - c*f)*(a + b*x))/((b*c - a*d)*(e + f*x))
)])/((m + 1)*(b*e - a*f)^(n + 1)*(e + f*x)^(m + 1)), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n + p
 + 2, 0] && ILtQ[n, 0]

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m + n + p + 2, 0] && NeQ[m, -1] && (Sum
SimplerQ[m, 1] || ( !(NeQ[n, -1] && SumSimplerQ[n, 1]) &&  !(NeQ[p, -1] && SumSimplerQ[p, 1])))

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{n \tanh ^{-1}(a x)}}{x \left (c-a^2 c x^2\right )^{3/2}} \, dx &=\frac {\sqrt {1-a^2 x^2} \int \frac {e^{n \tanh ^{-1}(a x)}}{x \left (1-a^2 x^2\right )^{3/2}} \, dx}{c \sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {1-a^2 x^2} \int \frac {(1-a x)^{-\frac {3}{2}-\frac {n}{2}} (1+a x)^{-\frac {3}{2}+\frac {n}{2}}}{x} \, dx}{c \sqrt {c-a^2 c x^2}}\\ &=\frac {(1-a x)^{\frac {1}{2} (-1-n)} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c (1+n) \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \int \frac {(1-a x)^{-\frac {1}{2}-\frac {n}{2}} (1+a x)^{-\frac {3}{2}+\frac {n}{2}} \left (-a (1+n)-a^2 x\right )}{x} \, dx}{a c (1+n) \sqrt {c-a^2 c x^2}}\\ &=\frac {(1-a x)^{\frac {1}{2} (-1-n)} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c (1+n) \sqrt {c-a^2 c x^2}}-\frac {(2+n) (1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c \left (1-n^2\right ) \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} \int \frac {a^2 (1-n) (1+n) (1-a x)^{\frac {1}{2}-\frac {n}{2}} (1+a x)^{-\frac {3}{2}+\frac {n}{2}}}{x} \, dx}{a^2 c (1-n) (1+n) \sqrt {c-a^2 c x^2}}\\ &=\frac {(1-a x)^{\frac {1}{2} (-1-n)} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c (1+n) \sqrt {c-a^2 c x^2}}-\frac {(2+n) (1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c \left (1-n^2\right ) \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} \int \frac {(1-a x)^{\frac {1}{2}-\frac {n}{2}} (1+a x)^{-\frac {3}{2}+\frac {n}{2}}}{x} \, dx}{c \sqrt {c-a^2 c x^2}}\\ &=\frac {(1-a x)^{\frac {1}{2} (-1-n)} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c (1+n) \sqrt {c-a^2 c x^2}}-\frac {(2+n) (1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1}{2} (-1+n)} \sqrt {1-a^2 x^2}}{c \left (1-n^2\right ) \sqrt {c-a^2 c x^2}}-\frac {2 (1-a x)^{\frac {3-n}{2}} (1+a x)^{\frac {1}{2} (-3+n)} \sqrt {1-a^2 x^2} \, _2F_1\left (1,\frac {3-n}{2};\frac {5-n}{2};\frac {1-a x}{1+a x}\right )}{c (3-n) \sqrt {c-a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 149, normalized size = 0.61 \[ \frac {\sqrt {1-a^2 x^2} (1-a x)^{\frac {1}{2} (-n-1)} (a x+1)^{\frac {n-3}{2}} \left (2 \left (n^2-1\right ) (a x-1)^2 \, _2F_1\left (1,\frac {3}{2}-\frac {n}{2};\frac {5}{2}-\frac {n}{2};\frac {1-a x}{a x+1}\right )-(n-3) (a x+1) (n (a x-2)+2 a x-1)\right )}{c (n-3) (n-1) (n+1) \sqrt {c-a^2 c x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(n*ArcTanh[a*x])/(x*(c - a^2*c*x^2)^(3/2)),x]

[Out]

((1 - a*x)^((-1 - n)/2)*(1 + a*x)^((-3 + n)/2)*Sqrt[1 - a^2*x^2]*(-((-3 + n)*(1 + a*x)*(-1 + 2*a*x + n*(-2 + a
*x))) + 2*(-1 + n^2)*(-1 + a*x)^2*Hypergeometric2F1[1, 3/2 - n/2, 5/2 - n/2, (1 - a*x)/(1 + a*x)]))/(c*(-3 + n
)*(-1 + n)*(1 + n)*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-a^{2} c x^{2} + c} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{a^{4} c^{2} x^{5} - 2 \, a^{2} c^{2} x^{3} + c^{2} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/x/(-a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*c*x^2 + c)*((a*x + 1)/(a*x - 1))^(1/2*n)/(a^4*c^2*x^5 - 2*a^2*c^2*x^3 + c^2*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac {3}{2}} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/x/(-a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(((a*x + 1)/(a*x - 1))^(1/2*n)/((-a^2*c*x^2 + c)^(3/2)*x), x)

________________________________________________________________________________________

maple [F]  time = 0.27, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{n \arctanh \left (a x \right )}}{x \left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))/x/(-a^2*c*x^2+c)^(3/2),x)

[Out]

int(exp(n*arctanh(a*x))/x/(-a^2*c*x^2+c)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac {3}{2}} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/x/(-a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(((a*x + 1)/(a*x - 1))^(1/2*n)/((-a^2*c*x^2 + c)^(3/2)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\mathrm {e}}^{n\,\mathrm {atanh}\left (a\,x\right )}}{x\,{\left (c-a^2\,c\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*atanh(a*x))/(x*(c - a^2*c*x^2)^(3/2)),x)

[Out]

int(exp(n*atanh(a*x))/(x*(c - a^2*c*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{n \operatorname {atanh}{\left (a x \right )}}}{x \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))/x/(-a**2*c*x**2+c)**(3/2),x)

[Out]

Integral(exp(n*atanh(a*x))/(x*(-c*(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________