3.1334 \(\int \frac {e^{n \tanh ^{-1}(a x)} x^3}{\sqrt {c-a^2 c x^2}} \, dx\)

Optimal. Leaf size=275 \[ -\frac {x^2 \sqrt {1-a^2 x^2} (a x+1)^{\frac {n+1}{2}} (1-a x)^{\frac {1-n}{2}}}{3 a^2 \sqrt {c-a^2 c x^2}}-\frac {2^{\frac {n-1}{2}} n \left (n^2+5\right ) \sqrt {1-a^2 x^2} (1-a x)^{\frac {3-n}{2}} \, _2F_1\left (\frac {1-n}{2},\frac {3-n}{2};\frac {5-n}{2};\frac {1}{2} (1-a x)\right )}{3 a^4 (1-n) (3-n) \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} (a x+1)^{\frac {n+1}{2}} \left (a (1-n) n x+n^2+n+4\right ) (1-a x)^{\frac {1-n}{2}}}{6 a^4 (1-n) \sqrt {c-a^2 c x^2}} \]

[Out]

-1/3*x^2*(-a*x+1)^(1/2-1/2*n)*(a*x+1)^(1/2+1/2*n)*(-a^2*x^2+1)^(1/2)/a^2/(-a^2*c*x^2+c)^(1/2)-1/6*(-a*x+1)^(1/
2-1/2*n)*(a*x+1)^(1/2+1/2*n)*(4+n+n^2+a*(1-n)*n*x)*(-a^2*x^2+1)^(1/2)/a^4/(1-n)/(-a^2*c*x^2+c)^(1/2)-1/3*2^(-1
/2+1/2*n)*n*(n^2+5)*(-a*x+1)^(3/2-1/2*n)*hypergeom([3/2-1/2*n, 1/2-1/2*n],[5/2-1/2*n],-1/2*a*x+1/2)*(-a^2*x^2+
1)^(1/2)/a^4/(n^2-4*n+3)/(-a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.38, antiderivative size = 275, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {6153, 6150, 100, 146, 69} \[ -\frac {2^{\frac {n-1}{2}} n \left (n^2+5\right ) \sqrt {1-a^2 x^2} (1-a x)^{\frac {3-n}{2}} \, _2F_1\left (\frac {1-n}{2},\frac {3-n}{2};\frac {5-n}{2};\frac {1}{2} (1-a x)\right )}{3 a^4 (1-n) (3-n) \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} (a x+1)^{\frac {n+1}{2}} \left (a (1-n) n x+n^2+n+4\right ) (1-a x)^{\frac {1-n}{2}}}{6 a^4 (1-n) \sqrt {c-a^2 c x^2}}-\frac {x^2 \sqrt {1-a^2 x^2} (a x+1)^{\frac {n+1}{2}} (1-a x)^{\frac {1-n}{2}}}{3 a^2 \sqrt {c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(n*ArcTanh[a*x])*x^3)/Sqrt[c - a^2*c*x^2],x]

[Out]

-(x^2*(1 - a*x)^((1 - n)/2)*(1 + a*x)^((1 + n)/2)*Sqrt[1 - a^2*x^2])/(3*a^2*Sqrt[c - a^2*c*x^2]) - ((1 - a*x)^
((1 - n)/2)*(1 + a*x)^((1 + n)/2)*(4 + n + n^2 + a*(1 - n)*n*x)*Sqrt[1 - a^2*x^2])/(6*a^4*(1 - n)*Sqrt[c - a^2
*c*x^2]) - (2^((-1 + n)/2)*n*(5 + n^2)*(1 - a*x)^((3 - n)/2)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[(1 - n)/2, (3
 - n)/2, (5 - n)/2, (1 - a*x)/2])/(3*a^4*(1 - n)*(3 - n)*Sqrt[c - a^2*c*x^2])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 146

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol] :
> Simp[((a^2*d*f*h*(n + 2) + b^2*d*e*g*(m + n + 3) + a*b*(c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b*f*h*(
b*c - a*d)*(m + 1)*x)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1))/(b^2*d*(b*c - a*d)*(m + 1)*(m + n + 3)), x] - Dist[
(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m +
 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d*(b*c - a*d)*(m +
1)*(m + n + 3)), Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && ((Ge
Q[m, -2] && LtQ[m, -1]) || SumSimplerQ[m, 1]) && NeQ[m, -1] && NeQ[m + n + 3, 0]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{n \tanh ^{-1}(a x)} x^3}{\sqrt {c-a^2 c x^2}} \, dx &=\frac {\sqrt {1-a^2 x^2} \int \frac {e^{n \tanh ^{-1}(a x)} x^3}{\sqrt {1-a^2 x^2}} \, dx}{\sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {1-a^2 x^2} \int x^3 (1-a x)^{-\frac {1}{2}-\frac {n}{2}} (1+a x)^{-\frac {1}{2}+\frac {n}{2}} \, dx}{\sqrt {c-a^2 c x^2}}\\ &=-\frac {x^2 (1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1+n}{2}} \sqrt {1-a^2 x^2}}{3 a^2 \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \int x (1-a x)^{-\frac {1}{2}-\frac {n}{2}} (1+a x)^{-\frac {1}{2}+\frac {n}{2}} (-2-a n x) \, dx}{3 a^2 \sqrt {c-a^2 c x^2}}\\ &=-\frac {x^2 (1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1+n}{2}} \sqrt {1-a^2 x^2}}{3 a^2 \sqrt {c-a^2 c x^2}}-\frac {(1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1+n}{2}} \left (4+n+n^2+a (1-n) n x\right ) \sqrt {1-a^2 x^2}}{6 a^4 (1-n) \sqrt {c-a^2 c x^2}}+\frac {\left (n \left (5+n^2\right ) \sqrt {1-a^2 x^2}\right ) \int (1-a x)^{\frac {1}{2}-\frac {n}{2}} (1+a x)^{-\frac {1}{2}+\frac {n}{2}} \, dx}{6 a^3 (1-n) \sqrt {c-a^2 c x^2}}\\ &=-\frac {x^2 (1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1+n}{2}} \sqrt {1-a^2 x^2}}{3 a^2 \sqrt {c-a^2 c x^2}}-\frac {(1-a x)^{\frac {1-n}{2}} (1+a x)^{\frac {1+n}{2}} \left (4+n+n^2+a (1-n) n x\right ) \sqrt {1-a^2 x^2}}{6 a^4 (1-n) \sqrt {c-a^2 c x^2}}-\frac {2^{\frac {1}{2} (-1+n)} n \left (5+n^2\right ) (1-a x)^{\frac {3-n}{2}} \sqrt {1-a^2 x^2} \, _2F_1\left (\frac {1-n}{2},\frac {3-n}{2};\frac {5-n}{2};\frac {1}{2} (1-a x)\right )}{3 a^4 (1-n) (3-n) \sqrt {c-a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 187, normalized size = 0.68 \[ \frac {\sqrt {1-a^2 x^2} (1-a x)^{\frac {1}{2}-\frac {n}{2}} \left (2^{\frac {n}{2}+1} n \left (n^2+5\right ) (a x-1) \, _2F_1\left (\frac {1}{2}-\frac {n}{2},\frac {3}{2}-\frac {n}{2};\frac {5}{2}-\frac {n}{2};\frac {1}{2}-\frac {a x}{2}\right )-\sqrt {2} (n-3) (a x+1)^{\frac {n+1}{2}} \left (n \left (2 a^2 x^2-a x-1\right )-2 \left (a^2 x^2+2\right )+n^2 (a x-1)\right )\right )}{6 \sqrt {2} a^4 (n-3) (n-1) \sqrt {c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(n*ArcTanh[a*x])*x^3)/Sqrt[c - a^2*c*x^2],x]

[Out]

((1 - a*x)^(1/2 - n/2)*Sqrt[1 - a^2*x^2]*(-(Sqrt[2]*(-3 + n)*(1 + a*x)^((1 + n)/2)*(n^2*(-1 + a*x) - 2*(2 + a^
2*x^2) + n*(-1 - a*x + 2*a^2*x^2))) + 2^(1 + n/2)*n*(5 + n^2)*(-1 + a*x)*Hypergeometric2F1[1/2 - n/2, 3/2 - n/
2, 5/2 - n/2, 1/2 - (a*x)/2]))/(6*Sqrt[2]*a^4*(-3 + n)*(-1 + n)*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-a^{2} c x^{2} + c} x^{3} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{a^{2} c x^{2} - c}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^3/(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*c*x^2 + c)*x^3*((a*x + 1)/(a*x - 1))^(1/2*n)/(a^2*c*x^2 - c), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^3/(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.27, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{n \arctanh \left (a x \right )} x^{3}}{\sqrt {-a^{2} c \,x^{2}+c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))*x^3/(-a^2*c*x^2+c)^(1/2),x)

[Out]

int(exp(n*arctanh(a*x))*x^3/(-a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{\sqrt {-a^{2} c x^{2} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))*x^3/(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3*((a*x + 1)/(a*x - 1))^(1/2*n)/sqrt(-a^2*c*x^2 + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^3\,{\mathrm {e}}^{n\,\mathrm {atanh}\left (a\,x\right )}}{\sqrt {c-a^2\,c\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*exp(n*atanh(a*x)))/(c - a^2*c*x^2)^(1/2),x)

[Out]

int((x^3*exp(n*atanh(a*x)))/(c - a^2*c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} e^{n \operatorname {atanh}{\left (a x \right )}}}{\sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))*x**3/(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(x**3*exp(n*atanh(a*x))/sqrt(-c*(a*x - 1)*(a*x + 1)), x)

________________________________________________________________________________________