3.132 \(\int \frac {e^{\frac {2}{3} \tanh ^{-1}(x)}}{x^2} \, dx\)

Optimal. Leaf size=85 \[ -\frac {(1-x)^{2/3} \sqrt [3]{x+1}}{x}-\frac {\log (x)}{3}+\log \left (\sqrt [3]{1-x}-\sqrt [3]{x+1}\right )+\frac {2 \tan ^{-1}\left (\frac {2 \sqrt [3]{1-x}}{\sqrt {3} \sqrt [3]{x+1}}+\frac {1}{\sqrt {3}}\right )}{\sqrt {3}} \]

[Out]

-(1-x)^(2/3)*(1+x)^(1/3)/x-1/3*ln(x)+ln((1-x)^(1/3)-(1+x)^(1/3))+2/3*arctan(1/3*3^(1/2)+2/3*(1-x)^(1/3)/(1+x)^
(1/3)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6126, 94, 91} \[ -\frac {(1-x)^{2/3} \sqrt [3]{x+1}}{x}-\frac {\log (x)}{3}+\log \left (\sqrt [3]{1-x}-\sqrt [3]{x+1}\right )+\frac {2 \tan ^{-1}\left (\frac {2 \sqrt [3]{1-x}}{\sqrt {3} \sqrt [3]{x+1}}+\frac {1}{\sqrt {3}}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[E^((2*ArcTanh[x])/3)/x^2,x]

[Out]

-(((1 - x)^(2/3)*(1 + x)^(1/3))/x) + (2*ArcTan[1/Sqrt[3] + (2*(1 - x)^(1/3))/(Sqrt[3]*(1 + x)^(1/3))])/Sqrt[3]
 - Log[x]/3 + Log[(1 - x)^(1/3) - (1 + x)^(1/3)]

Rule 91

Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)*((e_.) + (f_.)*(x_))), x_Symbol] :> With[{q = Rt[
(d*e - c*f)/(b*e - a*f), 3]}, -Simp[(Sqrt[3]*q*ArcTan[1/Sqrt[3] + (2*q*(a + b*x)^(1/3))/(Sqrt[3]*(c + d*x)^(1/
3))])/(d*e - c*f), x] + (Simp[(q*Log[e + f*x])/(2*(d*e - c*f)), x] - Simp[(3*q*Log[q*(a + b*x)^(1/3) - (c + d*
x)^(1/3)])/(2*(d*e - c*f)), x])] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int \frac {e^{\frac {2}{3} \tanh ^{-1}(x)}}{x^2} \, dx &=\int \frac {\sqrt [3]{1+x}}{\sqrt [3]{1-x} x^2} \, dx\\ &=-\frac {(1-x)^{2/3} \sqrt [3]{1+x}}{x}+\frac {2}{3} \int \frac {1}{\sqrt [3]{1-x} x (1+x)^{2/3}} \, dx\\ &=-\frac {(1-x)^{2/3} \sqrt [3]{1+x}}{x}+\frac {2 \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [3]{1-x}}{\sqrt {3} \sqrt [3]{1+x}}\right )}{\sqrt {3}}-\frac {\log (x)}{3}+\log \left (\sqrt [3]{1-x}-\sqrt [3]{1+x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 45, normalized size = 0.53 \[ -\frac {(1-x)^{2/3} \left (x \, _2F_1\left (\frac {2}{3},1;\frac {5}{3};\frac {1-x}{x+1}\right )+x+1\right )}{x (x+1)^{2/3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((2*ArcTanh[x])/3)/x^2,x]

[Out]

-(((1 - x)^(2/3)*(1 + x + x*Hypergeometric2F1[2/3, 1, 5/3, (1 - x)/(1 + x)]))/(x*(1 + x)^(2/3)))

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 152, normalized size = 1.79 \[ -\frac {2 \, \sqrt {3} x \arctan \left (\frac {2}{3} \, \sqrt {3} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {2}{3}} + \frac {1}{3} \, \sqrt {3}\right ) - 2 \, x \log \left (\left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {2}{3}} - 1\right ) + x \log \left (\frac {{\left (x - 1\right )} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {2}{3}} + x - \sqrt {-x^{2} + 1} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} - 1}{x - 1}\right ) - 3 \, {\left (x - 1\right )} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {2}{3}}}{3 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x^2+1)^(1/2))^(2/3)/x^2,x, algorithm="fricas")

[Out]

-1/3*(2*sqrt(3)*x*arctan(2/3*sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(2/3) + 1/3*sqrt(3)) - 2*x*log((-sqrt(-x^2 + 1)
/(x - 1))^(2/3) - 1) + x*log(((x - 1)*(-sqrt(-x^2 + 1)/(x - 1))^(2/3) + x - sqrt(-x^2 + 1)*(-sqrt(-x^2 + 1)/(x
 - 1))^(1/3) - 1)/(x - 1)) - 3*(x - 1)*(-sqrt(-x^2 + 1)/(x - 1))^(2/3))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {x + 1}{\sqrt {-x^{2} + 1}}\right )^{\frac {2}{3}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x^2+1)^(1/2))^(2/3)/x^2,x, algorithm="giac")

[Out]

integrate(((x + 1)/sqrt(-x^2 + 1))^(2/3)/x^2, x)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {1+x}{\sqrt {-x^{2}+1}}\right )^{\frac {2}{3}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1+x)/(-x^2+1)^(1/2))^(2/3)/x^2,x)

[Out]

int(((1+x)/(-x^2+1)^(1/2))^(2/3)/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {x + 1}{\sqrt {-x^{2} + 1}}\right )^{\frac {2}{3}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x^2+1)^(1/2))^(2/3)/x^2,x, algorithm="maxima")

[Out]

integrate(((x + 1)/sqrt(-x^2 + 1))^(2/3)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {x+1}{\sqrt {1-x^2}}\right )}^{2/3}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x + 1)/(1 - x^2)^(1/2))^(2/3)/x^2,x)

[Out]

int(((x + 1)/(1 - x^2)^(1/2))^(2/3)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {x + 1}{\sqrt {1 - x^{2}}}\right )^{\frac {2}{3}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1+x)/(-x**2+1)**(1/2))**(2/3)/x**2,x)

[Out]

Integral(((x + 1)/sqrt(1 - x**2))**(2/3)/x**2, x)

________________________________________________________________________________________