3.1306 \(\int \frac {e^{\frac {1}{2} \tanh ^{-1}(a x)}}{(c-a^2 c x^2)^{9/8}} \, dx\)

Optimal. Leaf size=74 \[ \frac {4 \sqrt [8]{2} \sqrt [8]{1-a^2 x^2} \, _2F_1\left (-\frac {3}{8},\frac {7}{8};\frac {5}{8};\frac {1}{2} (1-a x)\right )}{3 a c (1-a x)^{3/8} \sqrt [8]{c-a^2 c x^2}} \]

[Out]

4/3*2^(1/8)*(-a^2*x^2+1)^(1/8)*hypergeom([-3/8, 7/8],[5/8],-1/2*a*x+1/2)/a/c/(-a*x+1)^(3/8)/(-a^2*c*x^2+c)^(1/
8)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {6143, 6140, 69} \[ \frac {4 \sqrt [8]{2} \sqrt [8]{1-a^2 x^2} \, _2F_1\left (-\frac {3}{8},\frac {7}{8};\frac {5}{8};\frac {1}{2} (1-a x)\right )}{3 a c (1-a x)^{3/8} \sqrt [8]{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcTanh[a*x]/2)/(c - a^2*c*x^2)^(9/8),x]

[Out]

(4*2^(1/8)*(1 - a^2*x^2)^(1/8)*Hypergeometric2F1[-3/8, 7/8, 5/8, (1 - a*x)/2])/(3*a*c*(1 - a*x)^(3/8)*(c - a^2
*c*x^2)^(1/8))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{\frac {1}{2} \tanh ^{-1}(a x)}}{\left (c-a^2 c x^2\right )^{9/8}} \, dx &=\frac {\sqrt [8]{1-a^2 x^2} \int \frac {e^{\frac {1}{2} \tanh ^{-1}(a x)}}{\left (1-a^2 x^2\right )^{9/8}} \, dx}{c \sqrt [8]{c-a^2 c x^2}}\\ &=\frac {\sqrt [8]{1-a^2 x^2} \int \frac {1}{(1-a x)^{11/8} (1+a x)^{7/8}} \, dx}{c \sqrt [8]{c-a^2 c x^2}}\\ &=\frac {4 \sqrt [8]{2} \sqrt [8]{1-a^2 x^2} \, _2F_1\left (-\frac {3}{8},\frac {7}{8};\frac {5}{8};\frac {1}{2} (1-a x)\right )}{3 a c (1-a x)^{3/8} \sqrt [8]{c-a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 69, normalized size = 0.93 \[ \frac {4 \sqrt [8]{2-2 a^2 x^2} \, _2F_1\left (-\frac {3}{8},\frac {7}{8};\frac {5}{8};\frac {1}{2} (1-a x)\right )}{3 a c (1-a x)^{3/8} \sqrt [8]{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(ArcTanh[a*x]/2)/(c - a^2*c*x^2)^(9/8),x]

[Out]

(4*(2 - 2*a^2*x^2)^(1/8)*Hypergeometric2F1[-3/8, 7/8, 5/8, (1 - a*x)/2])/(3*a*c*(1 - a*x)^(3/8)*(c - a^2*c*x^2
)^(1/8))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(9/8),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac {9}{8}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(9/8),x, algorithm="giac")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/(-a^2*c*x^2 + c)^(9/8), x)

________________________________________________________________________________________

maple [F]  time = 0.28, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}}}{\left (-a^{2} c \,x^{2}+c \right )^{\frac {9}{8}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(9/8),x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(9/8),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac {9}{8}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(9/8),x, algorithm="maxima")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/(-a^2*c*x^2 + c)^(9/8), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}}}{{\left (c-a^2\,c\,x^2\right )}^{9/8}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(1/2)/(c - a^2*c*x^2)^(9/8),x)

[Out]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(1/2)/(c - a^2*c*x^2)^(9/8), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(1/2)/(-a**2*c*x**2+c)**(9/8),x)

[Out]

Timed out

________________________________________________________________________________________