3.1292 \(\int \frac {e^{\frac {1}{2} \tanh ^{-1}(a x)}}{\sqrt {c-a^2 c x^2}} \, dx\)

Optimal. Leaf size=309 \[ \frac {\sqrt {1-a^2 x^2} \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}+\frac {\sqrt {2} \sqrt {1-a^2 x^2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {2} \sqrt {1-a^2 x^2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{a \sqrt {c-a^2 c x^2}} \]

[Out]

1/2*ln(1-(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4)+(-a*x+1)^(1/2)/(a*x+1)^(1/2))*(-a^2*x^2+1)^(1/2)/a*2^(1/2)/(-a^2
*c*x^2+c)^(1/2)-1/2*ln(1+(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4)+(-a*x+1)^(1/2)/(a*x+1)^(1/2))*(-a^2*x^2+1)^(1/2)
/a*2^(1/2)/(-a^2*c*x^2+c)^(1/2)-arctan(-1+(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4))*2^(1/2)*(-a^2*x^2+1)^(1/2)/a/(
-a^2*c*x^2+c)^(1/2)-arctan(1+(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4))*2^(1/2)*(-a^2*x^2+1)^(1/2)/a/(-a^2*c*x^2+c)
^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 309, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {6143, 6140, 63, 240, 211, 1165, 628, 1162, 617, 204} \[ \frac {\sqrt {1-a^2 x^2} \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}+\frac {\sqrt {2} \sqrt {1-a^2 x^2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {2} \sqrt {1-a^2 x^2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{a \sqrt {c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcTanh[a*x]/2)/Sqrt[c - a^2*c*x^2],x]

[Out]

(Sqrt[2]*Sqrt[1 - a^2*x^2]*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(a*Sqrt[c - a^2*c*x^2]) - (S
qrt[2]*Sqrt[1 - a^2*x^2]*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(a*Sqrt[c - a^2*c*x^2]) + (Sqr
t[1 - a^2*x^2]*Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(Sqrt[2]*a*Sq
rt[c - a^2*c*x^2]) - (Sqrt[1 - a^2*x^2]*Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a
*x)^(1/4)])/(Sqrt[2]*a*Sqrt[c - a^2*c*x^2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 6140

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a*x)^(p - n/2)*
(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])

Rule 6143

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d*x^2)^Frac
Part[p])/(1 - a^2*x^2)^FracPart[p], Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{\frac {1}{2} \tanh ^{-1}(a x)}}{\sqrt {c-a^2 c x^2}} \, dx &=\frac {\sqrt {1-a^2 x^2} \int \frac {e^{\frac {1}{2} \tanh ^{-1}(a x)}}{\sqrt {1-a^2 x^2}} \, dx}{\sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {1-a^2 x^2} \int \frac {1}{(1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx}{\sqrt {c-a^2 c x^2}}\\ &=-\frac {\left (4 \sqrt {1-a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{2-x^4}} \, dx,x,\sqrt [4]{1-a x}\right )}{a \sqrt {c-a^2 c x^2}}\\ &=-\frac {\left (4 \sqrt {1-a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}\\ &=-\frac {\left (2 \sqrt {1-a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}-\frac {\left (2 \sqrt {1-a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}\\ &=-\frac {\sqrt {1-a^2 x^2} \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {1-a^2 x^2} \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}-\frac {\left (\sqrt {2} \sqrt {1-a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}+\frac {\left (\sqrt {2} \sqrt {1-a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {2} \sqrt {1-a^2 x^2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {2} \sqrt {1-a^2 x^2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{a \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2} \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2} \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{\sqrt {2} a \sqrt {c-a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 69, normalized size = 0.22 \[ -\frac {2\ 2^{3/4} \sqrt [4]{1-a x} \sqrt {1-a^2 x^2} \, _2F_1\left (\frac {1}{4},\frac {1}{4};\frac {5}{4};\frac {1}{2} (1-a x)\right )}{a \sqrt {c-a^2 c x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcTanh[a*x]/2)/Sqrt[c - a^2*c*x^2],x]

[Out]

(-2*2^(3/4)*(1 - a*x)^(1/4)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[1/4, 1/4, 5/4, (1 - a*x)/2])/(a*Sqrt[c - a^2*c
*x^2])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}}}{\sqrt {-a^{2} c x^{2} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/sqrt(-a^2*c*x^2 + c), x)

________________________________________________________________________________________

maple [F]  time = 0.28, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}}}{\sqrt {-a^{2} c \,x^{2}+c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(1/2),x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}}}{\sqrt {-a^{2} c x^{2} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/sqrt(-a^2*c*x^2 + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}}}{\sqrt {c-a^2\,c\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(1/2)/(c - a^2*c*x^2)^(1/2),x)

[Out]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(1/2)/(c - a^2*c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a x + 1}{\sqrt {- a^{2} x^{2} + 1}}}}{\sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(1/2)/(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(sqrt((a*x + 1)/sqrt(-a**2*x**2 + 1))/sqrt(-c*(a*x - 1)*(a*x + 1)), x)

________________________________________________________________________________________