3.1261 \(\int \frac {e^{-3 \tanh ^{-1}(a x)}}{(c-a^2 c x^2)^4} \, dx\)

Optimal. Leaf size=138 \[ \frac {16 x}{63 c^4 \sqrt {1-a^2 x^2}}+\frac {8 x}{63 c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (a x+1) \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (a x+1)^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {1}{9 a c^4 (a x+1)^3 \left (1-a^2 x^2\right )^{3/2}} \]

[Out]

8/63*x/c^4/(-a^2*x^2+1)^(3/2)-1/9/a/c^4/(a*x+1)^3/(-a^2*x^2+1)^(3/2)-2/21/a/c^4/(a*x+1)^2/(-a^2*x^2+1)^(3/2)-2
/21/a/c^4/(a*x+1)/(-a^2*x^2+1)^(3/2)+16/63*x/c^4/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {6139, 655, 659, 192, 191} \[ \frac {16 x}{63 c^4 \sqrt {1-a^2 x^2}}+\frac {8 x}{63 c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (a x+1) \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (a x+1)^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {1}{9 a c^4 (a x+1)^3 \left (1-a^2 x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcTanh[a*x])*(c - a^2*c*x^2)^4),x]

[Out]

(8*x)/(63*c^4*(1 - a^2*x^2)^(3/2)) - 1/(9*a*c^4*(1 + a*x)^3*(1 - a^2*x^2)^(3/2)) - 2/(21*a*c^4*(1 + a*x)^2*(1
- a^2*x^2)^(3/2)) - 2/(21*a*c^4*(1 + a*x)*(1 - a^2*x^2)^(3/2)) + (16*x)/(63*c^4*Sqrt[1 - a^2*x^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 192

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p + 1
], 0] && NeQ[p, -1]

Rule 655

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a^m, Int[(a + c*x^2)^(m + p
)/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && IntegerQ[m]
 && RationalQ[p] && (LtQ[0, -m, p] || LtQ[p, -m, 0]) && NeQ[m, 2] && NeQ[m, -1]

Rule 659

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*c*d*(m + p + 1)), x] + Dist[Simplify[m + 2*p + 2]/(2*d*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p,
 x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2
], 0]

Rule 6139

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a^2*x^2)^(p + n/
2)/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && ILtQ[(n - 1)/2, 0] &&
 !IntegerQ[p - n/2]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)}}{\left (c-a^2 c x^2\right )^4} \, dx &=\frac {\int \frac {(1-a x)^3}{\left (1-a^2 x^2\right )^{11/2}} \, dx}{c^4}\\ &=\frac {\int \frac {1}{(1+a x)^3 \left (1-a^2 x^2\right )^{5/2}} \, dx}{c^4}\\ &=-\frac {1}{9 a c^4 (1+a x)^3 \left (1-a^2 x^2\right )^{3/2}}+\frac {2 \int \frac {1}{(1+a x)^2 \left (1-a^2 x^2\right )^{5/2}} \, dx}{3 c^4}\\ &=-\frac {1}{9 a c^4 (1+a x)^3 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x)^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {10 \int \frac {1}{(1+a x) \left (1-a^2 x^2\right )^{5/2}} \, dx}{21 c^4}\\ &=-\frac {1}{9 a c^4 (1+a x)^3 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x)^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x) \left (1-a^2 x^2\right )^{3/2}}+\frac {8 \int \frac {1}{\left (1-a^2 x^2\right )^{5/2}} \, dx}{21 c^4}\\ &=\frac {8 x}{63 c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {1}{9 a c^4 (1+a x)^3 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x)^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x) \left (1-a^2 x^2\right )^{3/2}}+\frac {16 \int \frac {1}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{63 c^4}\\ &=\frac {8 x}{63 c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {1}{9 a c^4 (1+a x)^3 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x)^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {2}{21 a c^4 (1+a x) \left (1-a^2 x^2\right )^{3/2}}+\frac {16 x}{63 c^4 \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 75, normalized size = 0.54 \[ -\frac {16 a^6 x^6+48 a^5 x^5+24 a^4 x^4-56 a^3 x^3-66 a^2 x^2-6 a x+19}{63 a c^4 (1-a x)^{3/2} (a x+1)^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(3*ArcTanh[a*x])*(c - a^2*c*x^2)^4),x]

[Out]

-1/63*(19 - 6*a*x - 66*a^2*x^2 - 56*a^3*x^3 + 24*a^4*x^4 + 48*a^5*x^5 + 16*a^6*x^6)/(a*c^4*(1 - a*x)^(3/2)*(1
+ a*x)^(9/2))

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 195, normalized size = 1.41 \[ -\frac {19 \, a^{7} x^{7} + 57 \, a^{6} x^{6} + 19 \, a^{5} x^{5} - 95 \, a^{4} x^{4} - 95 \, a^{3} x^{3} + 19 \, a^{2} x^{2} + 57 \, a x + {\left (16 \, a^{6} x^{6} + 48 \, a^{5} x^{5} + 24 \, a^{4} x^{4} - 56 \, a^{3} x^{3} - 66 \, a^{2} x^{2} - 6 \, a x + 19\right )} \sqrt {-a^{2} x^{2} + 1} + 19}{63 \, {\left (a^{8} c^{4} x^{7} + 3 \, a^{7} c^{4} x^{6} + a^{6} c^{4} x^{5} - 5 \, a^{5} c^{4} x^{4} - 5 \, a^{4} c^{4} x^{3} + a^{3} c^{4} x^{2} + 3 \, a^{2} c^{4} x + a c^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a^2*c*x^2+c)^4,x, algorithm="fricas")

[Out]

-1/63*(19*a^7*x^7 + 57*a^6*x^6 + 19*a^5*x^5 - 95*a^4*x^4 - 95*a^3*x^3 + 19*a^2*x^2 + 57*a*x + (16*a^6*x^6 + 48
*a^5*x^5 + 24*a^4*x^4 - 56*a^3*x^3 - 66*a^2*x^2 - 6*a*x + 19)*sqrt(-a^2*x^2 + 1) + 19)/(a^8*c^4*x^7 + 3*a^7*c^
4*x^6 + a^6*c^4*x^5 - 5*a^5*c^4*x^4 - 5*a^4*c^4*x^3 + a^3*c^4*x^2 + 3*a^2*c^4*x + a*c^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (a^{2} c x^{2} - c\right )}^{4} {\left (a x + 1\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a^2*c*x^2+c)^4,x, algorithm="giac")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)/((a^2*c*x^2 - c)^4*(a*x + 1)^3), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 74, normalized size = 0.54 \[ -\frac {16 x^{6} a^{6}+48 x^{5} a^{5}+24 x^{4} a^{4}-56 x^{3} a^{3}-66 a^{2} x^{2}-6 a x +19}{63 \left (-a^{2} x^{2}+1\right )^{\frac {3}{2}} \left (a x +1\right )^{3} c^{4} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a^2*c*x^2+c)^4,x)

[Out]

-1/63/(-a^2*x^2+1)^(3/2)*(16*a^6*x^6+48*a^5*x^5+24*a^4*x^4-56*a^3*x^3-66*a^2*x^2-6*a*x+19)/(a*x+1)^3/c^4/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (a^{2} c x^{2} - c\right )}^{4} {\left (a x + 1\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a^2*c*x^2+c)^4,x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)/((a^2*c*x^2 - c)^4*(a*x + 1)^3), x)

________________________________________________________________________________________

mupad [B]  time = 1.27, size = 156, normalized size = 1.13 \[ \frac {\sqrt {1-a^2\,x^2}\,\left (\frac {197\,x}{1008\,c^4}-\frac {155}{1008\,a\,c^4}\right )}{{\left (a\,x-1\right )}^2\,{\left (a\,x+1\right )}^2}-\frac {13\,\sqrt {1-a^2\,x^2}}{252\,a\,c^4\,{\left (a\,x+1\right )}^4}-\frac {\sqrt {1-a^2\,x^2}}{36\,a\,c^4\,{\left (a\,x+1\right )}^5}-\frac {23\,\sqrt {1-a^2\,x^2}}{336\,a\,c^4\,{\left (a\,x+1\right )}^3}-\frac {16\,x\,\sqrt {1-a^2\,x^2}}{63\,c^4\,\left (a\,x-1\right )\,\left (a\,x+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^2*x^2)^(3/2)/((c - a^2*c*x^2)^4*(a*x + 1)^3),x)

[Out]

((1 - a^2*x^2)^(1/2)*((197*x)/(1008*c^4) - 155/(1008*a*c^4)))/((a*x - 1)^2*(a*x + 1)^2) - (13*(1 - a^2*x^2)^(1
/2))/(252*a*c^4*(a*x + 1)^4) - (1 - a^2*x^2)^(1/2)/(36*a*c^4*(a*x + 1)^5) - (23*(1 - a^2*x^2)^(1/2))/(336*a*c^
4*(a*x + 1)^3) - (16*x*(1 - a^2*x^2)^(1/2))/(63*c^4*(a*x - 1)*(a*x + 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{a^{7} x^{7} \sqrt {- a^{2} x^{2} + 1} + 3 a^{6} x^{6} \sqrt {- a^{2} x^{2} + 1} + a^{5} x^{5} \sqrt {- a^{2} x^{2} + 1} - 5 a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 5 a^{3} x^{3} \sqrt {- a^{2} x^{2} + 1} + a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} + 3 a x \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx}{c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/(-a**2*c*x**2+c)**4,x)

[Out]

Integral(1/(a**7*x**7*sqrt(-a**2*x**2 + 1) + 3*a**6*x**6*sqrt(-a**2*x**2 + 1) + a**5*x**5*sqrt(-a**2*x**2 + 1)
 - 5*a**4*x**4*sqrt(-a**2*x**2 + 1) - 5*a**3*x**3*sqrt(-a**2*x**2 + 1) + a**2*x**2*sqrt(-a**2*x**2 + 1) + 3*a*
x*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x)/c**4

________________________________________________________________________________________