3.1173 \(\int e^{3 \tanh ^{-1}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx\)

Optimal. Leaf size=136 \[ \frac {4 x^{m+1} \sqrt {c-a^2 c x^2} \, _2F_1(1,m+1;m+2;a x)}{(m+1) \sqrt {1-a^2 x^2}}-\frac {3 x^{m+1} \sqrt {c-a^2 c x^2}}{(m+1) \sqrt {1-a^2 x^2}}-\frac {a x^{m+2} \sqrt {c-a^2 c x^2}}{(m+2) \sqrt {1-a^2 x^2}} \]

[Out]

-3*x^(1+m)*(-a^2*c*x^2+c)^(1/2)/(1+m)/(-a^2*x^2+1)^(1/2)-a*x^(2+m)*(-a^2*c*x^2+c)^(1/2)/(2+m)/(-a^2*x^2+1)^(1/
2)+4*x^(1+m)*hypergeom([1, 1+m],[2+m],a*x)*(-a^2*c*x^2+c)^(1/2)/(1+m)/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6153, 6150, 88, 64} \[ \frac {4 x^{m+1} \sqrt {c-a^2 c x^2} \, _2F_1(1,m+1;m+2;a x)}{(m+1) \sqrt {1-a^2 x^2}}-\frac {3 x^{m+1} \sqrt {c-a^2 c x^2}}{(m+1) \sqrt {1-a^2 x^2}}-\frac {a x^{m+2} \sqrt {c-a^2 c x^2}}{(m+2) \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*x^m*Sqrt[c - a^2*c*x^2],x]

[Out]

(-3*x^(1 + m)*Sqrt[c - a^2*c*x^2])/((1 + m)*Sqrt[1 - a^2*x^2]) - (a*x^(2 + m)*Sqrt[c - a^2*c*x^2])/((2 + m)*Sq
rt[1 - a^2*x^2]) + (4*x^(1 + m)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[1, 1 + m, 2 + m, a*x])/((1 + m)*Sqrt[1 -
 a^2*x^2])

Rule 64

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c^n*(b*x)^(m + 1)*Hypergeometric2F1[-n, m +
 1, m + 2, -((d*x)/c)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[
c, 0] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-(d/(b*c)), 0])))

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int e^{3 \tanh ^{-1}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx &=\frac {\sqrt {c-a^2 c x^2} \int e^{3 \tanh ^{-1}(a x)} x^m \sqrt {1-a^2 x^2} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \frac {x^m (1+a x)^2}{1-a x} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \left (-3 x^m-a x^{1+m}+\frac {4 x^m}{1-a x}\right ) \, dx}{\sqrt {1-a^2 x^2}}\\ &=-\frac {3 x^{1+m} \sqrt {c-a^2 c x^2}}{(1+m) \sqrt {1-a^2 x^2}}-\frac {a x^{2+m} \sqrt {c-a^2 c x^2}}{(2+m) \sqrt {1-a^2 x^2}}+\frac {\left (4 \sqrt {c-a^2 c x^2}\right ) \int \frac {x^m}{1-a x} \, dx}{\sqrt {1-a^2 x^2}}\\ &=-\frac {3 x^{1+m} \sqrt {c-a^2 c x^2}}{(1+m) \sqrt {1-a^2 x^2}}-\frac {a x^{2+m} \sqrt {c-a^2 c x^2}}{(2+m) \sqrt {1-a^2 x^2}}+\frac {4 x^{1+m} \sqrt {c-a^2 c x^2} \, _2F_1(1,1+m;2+m;a x)}{(1+m) \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 74, normalized size = 0.54 \[ -\frac {x^{m+1} \sqrt {c-a^2 c x^2} (-4 (m+2) \, _2F_1(1,m+1;m+2;a x)+m (a x+3)+a x+6)}{(m+1) (m+2) \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a*x])*x^m*Sqrt[c - a^2*c*x^2],x]

[Out]

-((x^(1 + m)*Sqrt[c - a^2*c*x^2]*(6 + a*x + m*(3 + a*x) - 4*(2 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, a*x]))/
((1 + m)*(2 + m)*Sqrt[1 - a^2*x^2]))

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-a^{2} x^{2} + 1} {\left (a x + 1\right )} x^{m}}{a^{2} x^{2} - 2 \, a x + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m*(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*(a*x + 1)*x^m/(a^2*x^2 - 2*a*x + 1), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m*(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.42, size = 0, normalized size = 0.00 \[ \int \frac {\left (a x +1\right )^{3} x^{m} \sqrt {-a^{2} c \,x^{2}+c}}{\left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m*(-a^2*c*x^2+c)^(1/2),x)

[Out]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m*(-a^2*c*x^2+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} c x^{2} + c} {\left (a x + 1\right )}^{3} x^{m}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x^m*(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*(a*x + 1)^3*x^m/(-a^2*x^2 + 1)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^m\,\sqrt {c-a^2\,c\,x^2}\,{\left (a\,x+1\right )}^3}{{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^m*(c - a^2*c*x^2)^(1/2)*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2),x)

[Out]

int((x^m*(c - a^2*c*x^2)^(1/2)*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{m} \sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*x**m*(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(x**m*sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x + 1)**3/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________