3.1158 \(\int e^{3 \tanh ^{-1}(a x)} x \sqrt {c-a^2 c x^2} \, dx\)

Optimal. Leaf size=150 \[ -\frac {3 x^2 \sqrt {c-a^2 c x^2}}{2 \sqrt {1-a^2 x^2}}-\frac {4 x \sqrt {c-a^2 c x^2}}{a \sqrt {1-a^2 x^2}}-\frac {4 \sqrt {c-a^2 c x^2} \log (1-a x)}{a^2 \sqrt {1-a^2 x^2}}-\frac {a x^3 \sqrt {c-a^2 c x^2}}{3 \sqrt {1-a^2 x^2}} \]

[Out]

-4*x*(-a^2*c*x^2+c)^(1/2)/a/(-a^2*x^2+1)^(1/2)-3/2*x^2*(-a^2*c*x^2+c)^(1/2)/(-a^2*x^2+1)^(1/2)-1/3*a*x^3*(-a^2
*c*x^2+c)^(1/2)/(-a^2*x^2+1)^(1/2)-4*ln(-a*x+1)*(-a^2*c*x^2+c)^(1/2)/a^2/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6153, 6150, 77} \[ -\frac {a x^3 \sqrt {c-a^2 c x^2}}{3 \sqrt {1-a^2 x^2}}-\frac {3 x^2 \sqrt {c-a^2 c x^2}}{2 \sqrt {1-a^2 x^2}}-\frac {4 x \sqrt {c-a^2 c x^2}}{a \sqrt {1-a^2 x^2}}-\frac {4 \sqrt {c-a^2 c x^2} \log (1-a x)}{a^2 \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*x*Sqrt[c - a^2*c*x^2],x]

[Out]

(-4*x*Sqrt[c - a^2*c*x^2])/(a*Sqrt[1 - a^2*x^2]) - (3*x^2*Sqrt[c - a^2*c*x^2])/(2*Sqrt[1 - a^2*x^2]) - (a*x^3*
Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - a^2*x^2]) - (4*Sqrt[c - a^2*c*x^2]*Log[1 - a*x])/(a^2*Sqrt[1 - a^2*x^2])

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int e^{3 \tanh ^{-1}(a x)} x \sqrt {c-a^2 c x^2} \, dx &=\frac {\sqrt {c-a^2 c x^2} \int e^{3 \tanh ^{-1}(a x)} x \sqrt {1-a^2 x^2} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \frac {x (1+a x)^2}{1-a x} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\sqrt {c-a^2 c x^2} \int \left (-\frac {4}{a}-3 x-a x^2-\frac {4}{a (-1+a x)}\right ) \, dx}{\sqrt {1-a^2 x^2}}\\ &=-\frac {4 x \sqrt {c-a^2 c x^2}}{a \sqrt {1-a^2 x^2}}-\frac {3 x^2 \sqrt {c-a^2 c x^2}}{2 \sqrt {1-a^2 x^2}}-\frac {a x^3 \sqrt {c-a^2 c x^2}}{3 \sqrt {1-a^2 x^2}}-\frac {4 \sqrt {c-a^2 c x^2} \log (1-a x)}{a^2 \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 64, normalized size = 0.43 \[ \frac {\sqrt {c-a^2 c x^2} \left (-\frac {4 \log (1-a x)}{a^2}-\frac {a x^3}{3}-\frac {4 x}{a}-\frac {3 x^2}{2}\right )}{\sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a*x])*x*Sqrt[c - a^2*c*x^2],x]

[Out]

(Sqrt[c - a^2*c*x^2]*((-4*x)/a - (3*x^2)/2 - (a*x^3)/3 - (4*Log[1 - a*x])/a^2))/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 367, normalized size = 2.45 \[ \left [\frac {12 \, {\left (a^{2} x^{2} - 1\right )} \sqrt {c} \log \left (\frac {a^{6} c x^{6} - 4 \, a^{5} c x^{5} + 5 \, a^{4} c x^{4} - 4 \, a^{2} c x^{2} + 4 \, a c x + {\left (a^{4} x^{4} - 4 \, a^{3} x^{3} + 6 \, a^{2} x^{2} - 4 \, a x\right )} \sqrt {-a^{2} c x^{2} + c} \sqrt {-a^{2} x^{2} + 1} \sqrt {c} - 2 \, c}{a^{4} x^{4} - 2 \, a^{3} x^{3} + 2 \, a x - 1}\right ) + {\left (2 \, a^{3} x^{3} + 9 \, a^{2} x^{2} + 24 \, a x\right )} \sqrt {-a^{2} c x^{2} + c} \sqrt {-a^{2} x^{2} + 1}}{6 \, {\left (a^{4} x^{2} - a^{2}\right )}}, -\frac {24 \, {\left (a^{2} x^{2} - 1\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} {\left (a^{2} x^{2} - 2 \, a x + 2\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c}}{a^{4} c x^{4} - 2 \, a^{3} c x^{3} - a^{2} c x^{2} + 2 \, a c x}\right ) - {\left (2 \, a^{3} x^{3} + 9 \, a^{2} x^{2} + 24 \, a x\right )} \sqrt {-a^{2} c x^{2} + c} \sqrt {-a^{2} x^{2} + 1}}{6 \, {\left (a^{4} x^{2} - a^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/6*(12*(a^2*x^2 - 1)*sqrt(c)*log((a^6*c*x^6 - 4*a^5*c*x^5 + 5*a^4*c*x^4 - 4*a^2*c*x^2 + 4*a*c*x + (a^4*x^4 -
 4*a^3*x^3 + 6*a^2*x^2 - 4*a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*sqrt(c) - 2*c)/(a^4*x^4 - 2*a^3*x^3 +
2*a*x - 1)) + (2*a^3*x^3 + 9*a^2*x^2 + 24*a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1))/(a^4*x^2 - a^2), -1/6*
(24*(a^2*x^2 - 1)*sqrt(-c)*arctan(sqrt(-a^2*c*x^2 + c)*(a^2*x^2 - 2*a*x + 2)*sqrt(-a^2*x^2 + 1)*sqrt(-c)/(a^4*
c*x^4 - 2*a^3*c*x^3 - a^2*c*x^2 + 2*a*c*x)) - (2*a^3*x^3 + 9*a^2*x^2 + 24*a*x)*sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*
x^2 + 1))/(a^4*x^2 - a^2)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} c x^{2} + c} {\left (a x + 1\right )}^{3} x}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*(a*x + 1)^3*x/(-a^2*x^2 + 1)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 72, normalized size = 0.48 \[ \frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a^{2} x^{2}-1\right )}\, \left (2 x^{3} a^{3}+9 a^{2} x^{2}+24 a x +24 \ln \left (a x -1\right )\right )}{6 \left (a^{2} x^{2}-1\right ) a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(-a^2*c*x^2+c)^(1/2),x)

[Out]

1/6*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)*(2*x^3*a^3+9*a^2*x^2+24*a*x+24*ln(a*x-1))/(a^2*x^2-1)/a^2

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,\sqrt {c-a^2\,c\,x^2}\,{\left (a\,x+1\right )}^3}{{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(c - a^2*c*x^2)^(1/2)*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2),x)

[Out]

int((x*(c - a^2*c*x^2)^(1/2)*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*x*(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(x*sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x + 1)**3/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________