3.1082 \(\int \frac {e^{2 \tanh ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx\)

Optimal. Leaf size=82 \[ -\frac {\sqrt {c-a^2 c x^2}}{x}+a \sqrt {c} \tan ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-2 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \]

[Out]

a*arctan(a*x*c^(1/2)/(-a^2*c*x^2+c)^(1/2))*c^(1/2)-2*a*arctanh((-a^2*c*x^2+c)^(1/2)/c^(1/2))*c^(1/2)-(-a^2*c*x
^2+c)^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {6151, 1807, 844, 217, 203, 266, 63, 208} \[ -\frac {\sqrt {c-a^2 c x^2}}{x}+a \sqrt {c} \tan ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-2 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2])/x^2,x]

[Out]

-(Sqrt[c - a^2*c*x^2]/x) + a*Sqrt[c]*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]] - 2*a*Sqrt[c]*ArcTanh[Sqrt[c -
a^2*c*x^2]/Sqrt[c]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 6151

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^(n/2), Int[x^m*(c
 + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] ||
 GtQ[c, 0]) && IGtQ[n/2, 0]

Rubi steps

\begin {align*} \int \frac {e^{2 \tanh ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx &=c \int \frac {(1+a x)^2}{x^2 \sqrt {c-a^2 c x^2}} \, dx\\ &=-\frac {\sqrt {c-a^2 c x^2}}{x}-\int \frac {-2 a c-a^2 c x}{x \sqrt {c-a^2 c x^2}} \, dx\\ &=-\frac {\sqrt {c-a^2 c x^2}}{x}+(2 a c) \int \frac {1}{x \sqrt {c-a^2 c x^2}} \, dx+\left (a^2 c\right ) \int \frac {1}{\sqrt {c-a^2 c x^2}} \, dx\\ &=-\frac {\sqrt {c-a^2 c x^2}}{x}+(a c) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c-a^2 c x}} \, dx,x,x^2\right )+\left (a^2 c\right ) \operatorname {Subst}\left (\int \frac {1}{1+a^2 c x^2} \, dx,x,\frac {x}{\sqrt {c-a^2 c x^2}}\right )\\ &=-\frac {\sqrt {c-a^2 c x^2}}{x}+a \sqrt {c} \tan ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-\frac {2 \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2 c}} \, dx,x,\sqrt {c-a^2 c x^2}\right )}{a}\\ &=-\frac {\sqrt {c-a^2 c x^2}}{x}+a \sqrt {c} \tan ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-2 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 106, normalized size = 1.29 \[ -\frac {\sqrt {c-a^2 c x^2}}{x}-2 a \sqrt {c} \log \left (\sqrt {c} \sqrt {c-a^2 c x^2}+c\right )-a \sqrt {c} \tan ^{-1}\left (\frac {a x \sqrt {c-a^2 c x^2}}{\sqrt {c} \left (a^2 x^2-1\right )}\right )+2 a \sqrt {c} \log (x) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^(2*ArcTanh[a*x])*Sqrt[c - a^2*c*x^2])/x^2,x]

[Out]

-(Sqrt[c - a^2*c*x^2]/x) - a*Sqrt[c]*ArcTan[(a*x*Sqrt[c - a^2*c*x^2])/(Sqrt[c]*(-1 + a^2*x^2))] + 2*a*Sqrt[c]*
Log[x] - 2*a*Sqrt[c]*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]]

________________________________________________________________________________________

fricas [A]  time = 1.01, size = 212, normalized size = 2.59 \[ \left [-\frac {a \sqrt {c} x \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} a \sqrt {c} x}{a^{2} c x^{2} - c}\right ) - a \sqrt {c} x \log \left (-\frac {a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) + \sqrt {-a^{2} c x^{2} + c}}{x}, -\frac {4 \, a \sqrt {-c} x \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) - a \sqrt {-c} x \log \left (2 \, a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} a \sqrt {-c} x - c\right ) + 2 \, \sqrt {-a^{2} c x^{2} + c}}{2 \, x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[-(a*sqrt(c)*x*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 - c)) - a*sqrt(c)*x*log(-(a^2*c*x^2 + 2*sqrt
(-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) + sqrt(-a^2*c*x^2 + c))/x, -1/2*(4*a*sqrt(-c)*x*arctan(sqrt(-a^2*c*x^2 +
c)*sqrt(-c)/(a^2*c*x^2 - c)) - a*sqrt(-c)*x*log(2*a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) + 2*sqr
t(-a^2*c*x^2 + c))/x]

________________________________________________________________________________________

giac [A]  time = 1.84, size = 133, normalized size = 1.62 \[ \frac {4 \, a c \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} + \frac {a^{2} \sqrt {-c} \log \left ({\left | -\sqrt {-a^{2} c} x + \sqrt {-a^{2} c x^{2} + c} \right |}\right )}{{\left | a \right |}} + \frac {2 \, a^{2} \sqrt {-c} c}{{\left ({\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} - c\right )} {\left | a \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

4*a*c*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) + a^2*sqrt(-c)*log(abs(-sqrt(-a^2*c)*
x + sqrt(-a^2*c*x^2 + c)))/abs(a) + 2*a^2*sqrt(-c)*c/(((sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2 - c)*abs(a))

________________________________________________________________________________________

maple [B]  time = 0.05, size = 211, normalized size = 2.57 \[ -2 \sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right ) a +2 \sqrt {-a^{2} c \,x^{2}+c}\, a -\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{c x}-a^{2} x \sqrt {-a^{2} c \,x^{2}+c}-\frac {a^{2} c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{\sqrt {a^{2} c}}-2 a \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 a c \left (x -\frac {1}{a}\right )}+\frac {2 a^{2} c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 a c \left (x -\frac {1}{a}\right )}}\right )}{\sqrt {a^{2} c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(1/2)/x^2,x)

[Out]

-2*c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)*a+2*(-a^2*c*x^2+c)^(1/2)*a-1/c/x*(-a^2*c*x^2+c)^(3/2)-a^
2*x*(-a^2*c*x^2+c)^(1/2)-a^2*c/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*x^2+c)^(1/2))-2*a*(-(x-1/a)^2*a^2*
c-2*a*c*(x-1/a))^(1/2)+2*a^2*c/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-(x-1/a)^2*a^2*c-2*a*c*(x-1/a))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -a^{2} \sqrt {c} \int \frac {\sqrt {a x + 1} \sqrt {-a x + 1}}{a^{2} x^{2} - 1}\,{d x} + a \sqrt {c} \log \left (\frac {\sqrt {-a^{2} c x^{2} + c} - \sqrt {c}}{\sqrt {-a^{2} c x^{2} + c} + \sqrt {c}}\right ) - \frac {\sqrt {a x + 1} \sqrt {-a x + 1} \sqrt {c}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

-a^2*sqrt(c)*integrate(sqrt(a*x + 1)*sqrt(-a*x + 1)/(a^2*x^2 - 1), x) + a*sqrt(c)*log((sqrt(-a^2*c*x^2 + c) -
sqrt(c))/(sqrt(-a^2*c*x^2 + c) + sqrt(c))) - sqrt(a*x + 1)*sqrt(-a*x + 1)*sqrt(c)/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ -\int \frac {\sqrt {c-a^2\,c\,x^2}\,{\left (a\,x+1\right )}^2}{x^2\,\left (a^2\,x^2-1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((c - a^2*c*x^2)^(1/2)*(a*x + 1)^2)/(x^2*(a^2*x^2 - 1)),x)

[Out]

-int(((c - a^2*c*x^2)^(1/2)*(a*x + 1)^2)/(x^2*(a^2*x^2 - 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {\sqrt {- a^{2} c x^{2} + c}}{a x^{3} - x^{2}}\, dx - \int \frac {a x \sqrt {- a^{2} c x^{2} + c}}{a x^{3} - x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)**(1/2)/x**2,x)

[Out]

-Integral(sqrt(-a**2*c*x**2 + c)/(a*x**3 - x**2), x) - Integral(a*x*sqrt(-a**2*c*x**2 + c)/(a*x**3 - x**2), x)

________________________________________________________________________________________