3.95 \(\int (c e+d e x)^2 (a+b \cosh ^{-1}(c+d x)) \, dx\)

Optimal. Leaf size=97 \[ \frac {e^2 (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )}{3 d}-\frac {b e^2 \sqrt {c+d x-1} \sqrt {c+d x+1} (c+d x)^2}{9 d}-\frac {2 b e^2 \sqrt {c+d x-1} \sqrt {c+d x+1}}{9 d} \]

[Out]

1/3*e^2*(d*x+c)^3*(a+b*arccosh(d*x+c))/d-2/9*b*e^2*(d*x+c-1)^(1/2)*(d*x+c+1)^(1/2)/d-1/9*b*e^2*(d*x+c)^2*(d*x+
c-1)^(1/2)*(d*x+c+1)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {5866, 12, 5662, 100, 74} \[ \frac {e^2 (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )}{3 d}-\frac {b e^2 \sqrt {c+d x-1} \sqrt {c+d x+1} (c+d x)^2}{9 d}-\frac {2 b e^2 \sqrt {c+d x-1} \sqrt {c+d x+1}}{9 d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2*(a + b*ArcCosh[c + d*x]),x]

[Out]

(-2*b*e^2*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])/(9*d) - (b*e^2*Sqrt[-1 + c + d*x]*(c + d*x)^2*Sqrt[1 + c + d*x
])/(9*d) + (e^2*(c + d*x)^3*(a + b*ArcCosh[c + d*x]))/(3*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 74

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 5662

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
osh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqr
t[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5866

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int (c e+d e x)^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \, dx &=\frac {\operatorname {Subst}\left (\int e^2 x^2 \left (a+b \cosh ^{-1}(x)\right ) \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 \operatorname {Subst}\left (\int x^2 \left (a+b \cosh ^{-1}(x)\right ) \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )}{3 d}-\frac {\left (b e^2\right ) \operatorname {Subst}\left (\int \frac {x^3}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,c+d x\right )}{3 d}\\ &=-\frac {b e^2 \sqrt {-1+c+d x} (c+d x)^2 \sqrt {1+c+d x}}{9 d}+\frac {e^2 (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )}{3 d}-\frac {\left (b e^2\right ) \operatorname {Subst}\left (\int \frac {2 x}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,c+d x\right )}{9 d}\\ &=-\frac {b e^2 \sqrt {-1+c+d x} (c+d x)^2 \sqrt {1+c+d x}}{9 d}+\frac {e^2 (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )}{3 d}-\frac {\left (2 b e^2\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,c+d x\right )}{9 d}\\ &=-\frac {2 b e^2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{9 d}-\frac {b e^2 \sqrt {-1+c+d x} (c+d x)^2 \sqrt {1+c+d x}}{9 d}+\frac {e^2 (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 71, normalized size = 0.73 \[ \frac {e^2 \left (\frac {1}{3} (c+d x)^3 \left (a+b \cosh ^{-1}(c+d x)\right )-\frac {1}{9} b \sqrt {c+d x-1} \sqrt {c+d x+1} \left (c^2+2 c d x+d^2 x^2+2\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^2*(a + b*ArcCosh[c + d*x]),x]

[Out]

(e^2*(-1/9*(b*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x]*(2 + c^2 + 2*c*d*x + d^2*x^2)) + ((c + d*x)^3*(a + b*ArcCos
h[c + d*x]))/3))/d

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 168, normalized size = 1.73 \[ \frac {3 \, a d^{3} e^{2} x^{3} + 9 \, a c d^{2} e^{2} x^{2} + 9 \, a c^{2} d e^{2} x + 3 \, {\left (b d^{3} e^{2} x^{3} + 3 \, b c d^{2} e^{2} x^{2} + 3 \, b c^{2} d e^{2} x + b c^{3} e^{2}\right )} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) - {\left (b d^{2} e^{2} x^{2} + 2 \, b c d e^{2} x + {\left (b c^{2} + 2 \, b\right )} e^{2}\right )} \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}}{9 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arccosh(d*x+c)),x, algorithm="fricas")

[Out]

1/9*(3*a*d^3*e^2*x^3 + 9*a*c*d^2*e^2*x^2 + 9*a*c^2*d*e^2*x + 3*(b*d^3*e^2*x^3 + 3*b*c*d^2*e^2*x^2 + 3*b*c^2*d*
e^2*x + b*c^3*e^2)*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)) - (b*d^2*e^2*x^2 + 2*b*c*d*e^2*x + (b*c^2
+ 2*b)*e^2)*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1))/d

________________________________________________________________________________________

giac [B]  time = 3.73, size = 406, normalized size = 4.19 \[ \frac {1}{18} \, {\left (6 \, a d^{2} x^{3} + 18 \, a c d x^{2} - 18 \, {\left (d {\left (\frac {c \log \left ({\left | -c d - {\left (x {\left | d \right |} - \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right )} {\left | d \right |} \right |}\right )}{d {\left | d \right |}} + \frac {\sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}}{d^{2}}\right )} - x \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right )\right )} b c^{2} + 9 \, {\left (2 \, x^{2} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) - {\left (\sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} {\left (\frac {x}{d^{2}} - \frac {3 \, c}{d^{3}}\right )} - \frac {{\left (2 \, c^{2} + 1\right )} \log \left ({\left | -c d - {\left (x {\left | d \right |} - \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right )} {\left | d \right |} \right |}\right )}{d^{2} {\left | d \right |}}\right )} d\right )} b c d + {\left (6 \, x^{3} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) - {\left (\sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} {\left (x {\left (\frac {2 \, x}{d^{2}} - \frac {5 \, c}{d^{3}}\right )} + \frac {11 \, c^{2} d + 4 \, d}{d^{5}}\right )} + \frac {3 \, {\left (2 \, c^{3} + 3 \, c\right )} \log \left ({\left | -c d - {\left (x {\left | d \right |} - \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right )} {\left | d \right |} \right |}\right )}{d^{3} {\left | d \right |}}\right )} d\right )} b d^{2} + 18 \, a c^{2} x\right )} e^{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arccosh(d*x+c)),x, algorithm="giac")

[Out]

1/18*(6*a*d^2*x^3 + 18*a*c*d*x^2 - 18*(d*(c*log(abs(-c*d - (x*abs(d) - sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1))*abs(
d)))/(d*abs(d)) + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)/d^2) - x*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)))
*b*c^2 + 9*(2*x^2*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)) - (sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*(x/d^2
 - 3*c/d^3) - (2*c^2 + 1)*log(abs(-c*d - (x*abs(d) - sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1))*abs(d)))/(d^2*abs(d)))
*d)*b*c*d + (6*x^3*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)) - (sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*(x*(2
*x/d^2 - 5*c/d^3) + (11*c^2*d + 4*d)/d^5) + 3*(2*c^3 + 3*c)*log(abs(-c*d - (x*abs(d) - sqrt(d^2*x^2 + 2*c*d*x
+ c^2 - 1))*abs(d)))/(d^3*abs(d)))*d)*b*d^2 + 18*a*c^2*x)*e^2

________________________________________________________________________________________

maple [A]  time = 0.01, size = 67, normalized size = 0.69 \[ \frac {\frac {\left (d x +c \right )^{3} e^{2} a}{3}+e^{2} b \left (\frac {\mathrm {arccosh}\left (d x +c \right ) \left (d x +c \right )^{3}}{3}-\frac {\sqrt {d x +c -1}\, \sqrt {d x +c +1}\, \left (\left (d x +c \right )^{2}+2\right )}{9}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2*(a+b*arccosh(d*x+c)),x)

[Out]

1/d*(1/3*(d*x+c)^3*e^2*a+e^2*b*(1/3*arccosh(d*x+c)*(d*x+c)^3-1/9*(d*x+c-1)^(1/2)*(d*x+c+1)^(1/2)*((d*x+c)^2+2)
))

________________________________________________________________________________________

maxima [B]  time = 0.50, size = 449, normalized size = 4.63 \[ \frac {1}{3} \, a d^{2} e^{2} x^{3} + a c d e^{2} x^{2} + \frac {1}{2} \, {\left (2 \, x^{2} \operatorname {arcosh}\left (d x + c\right ) - d {\left (\frac {3 \, c^{2} \log \left (2 \, d^{2} x + 2 \, c d + 2 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} d\right )}{d^{3}} + \frac {\sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} x}{d^{2}} - \frac {{\left (c^{2} - 1\right )} \log \left (2 \, d^{2} x + 2 \, c d + 2 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} d\right )}{d^{3}} - \frac {3 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} c}{d^{3}}\right )}\right )} b c d e^{2} + \frac {1}{18} \, {\left (6 \, x^{3} \operatorname {arcosh}\left (d x + c\right ) - d {\left (\frac {2 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} x^{2}}{d^{2}} - \frac {15 \, c^{3} \log \left (2 \, d^{2} x + 2 \, c d + 2 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} d\right )}{d^{4}} - \frac {5 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} c x}{d^{3}} + \frac {9 \, {\left (c^{2} - 1\right )} c \log \left (2 \, d^{2} x + 2 \, c d + 2 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} d\right )}{d^{4}} + \frac {15 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} c^{2}}{d^{4}} - \frac {4 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} {\left (c^{2} - 1\right )}}{d^{4}}\right )}\right )} b d^{2} e^{2} + a c^{2} e^{2} x + \frac {{\left ({\left (d x + c\right )} \operatorname {arcosh}\left (d x + c\right ) - \sqrt {{\left (d x + c\right )}^{2} - 1}\right )} b c^{2} e^{2}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arccosh(d*x+c)),x, algorithm="maxima")

[Out]

1/3*a*d^2*e^2*x^3 + a*c*d*e^2*x^2 + 1/2*(2*x^2*arccosh(d*x + c) - d*(3*c^2*log(2*d^2*x + 2*c*d + 2*sqrt(d^2*x^
2 + 2*c*d*x + c^2 - 1)*d)/d^3 + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*x/d^2 - (c^2 - 1)*log(2*d^2*x + 2*c*d + 2*sq
rt(d^2*x^2 + 2*c*d*x + c^2 - 1)*d)/d^3 - 3*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*c/d^3))*b*c*d*e^2 + 1/18*(6*x^3*a
rccosh(d*x + c) - d*(2*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*x^2/d^2 - 15*c^3*log(2*d^2*x + 2*c*d + 2*sqrt(d^2*x^2
 + 2*c*d*x + c^2 - 1)*d)/d^4 - 5*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*c*x/d^3 + 9*(c^2 - 1)*c*log(2*d^2*x + 2*c*d
 + 2*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*d)/d^4 + 15*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*c^2/d^4 - 4*sqrt(d^2*x^2
+ 2*c*d*x + c^2 - 1)*(c^2 - 1)/d^4))*b*d^2*e^2 + a*c^2*e^2*x + ((d*x + c)*arccosh(d*x + c) - sqrt((d*x + c)^2
- 1))*b*c^2*e^2/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (c\,e+d\,e\,x\right )}^2\,\left (a+b\,\mathrm {acosh}\left (c+d\,x\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^2*(a + b*acosh(c + d*x)),x)

[Out]

int((c*e + d*e*x)^2*(a + b*acosh(c + d*x)), x)

________________________________________________________________________________________

sympy [A]  time = 0.73, size = 258, normalized size = 2.66 \[ \begin {cases} a c^{2} e^{2} x + a c d e^{2} x^{2} + \frac {a d^{2} e^{2} x^{3}}{3} + \frac {b c^{3} e^{2} \operatorname {acosh}{\left (c + d x \right )}}{3 d} + b c^{2} e^{2} x \operatorname {acosh}{\left (c + d x \right )} - \frac {b c^{2} e^{2} \sqrt {c^{2} + 2 c d x + d^{2} x^{2} - 1}}{9 d} + b c d e^{2} x^{2} \operatorname {acosh}{\left (c + d x \right )} - \frac {2 b c e^{2} x \sqrt {c^{2} + 2 c d x + d^{2} x^{2} - 1}}{9} + \frac {b d^{2} e^{2} x^{3} \operatorname {acosh}{\left (c + d x \right )}}{3} - \frac {b d e^{2} x^{2} \sqrt {c^{2} + 2 c d x + d^{2} x^{2} - 1}}{9} - \frac {2 b e^{2} \sqrt {c^{2} + 2 c d x + d^{2} x^{2} - 1}}{9 d} & \text {for}\: d \neq 0 \\c^{2} e^{2} x \left (a + b \operatorname {acosh}{\relax (c )}\right ) & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2*(a+b*acosh(d*x+c)),x)

[Out]

Piecewise((a*c**2*e**2*x + a*c*d*e**2*x**2 + a*d**2*e**2*x**3/3 + b*c**3*e**2*acosh(c + d*x)/(3*d) + b*c**2*e*
*2*x*acosh(c + d*x) - b*c**2*e**2*sqrt(c**2 + 2*c*d*x + d**2*x**2 - 1)/(9*d) + b*c*d*e**2*x**2*acosh(c + d*x)
- 2*b*c*e**2*x*sqrt(c**2 + 2*c*d*x + d**2*x**2 - 1)/9 + b*d**2*e**2*x**3*acosh(c + d*x)/3 - b*d*e**2*x**2*sqrt
(c**2 + 2*c*d*x + d**2*x**2 - 1)/9 - 2*b*e**2*sqrt(c**2 + 2*c*d*x + d**2*x**2 - 1)/(9*d), Ne(d, 0)), (c**2*e**
2*x*(a + b*acosh(c)), True))

________________________________________________________________________________________