3.77 \(\int \frac {(f+g x) (a+b \cosh ^{-1}(c x))^n}{\sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}} \, dx\)

Optimal. Leaf size=260 \[ \frac {g e^{-\frac {a}{b}} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x}}-\frac {g e^{a/b} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x}}+\frac {f \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^{n+1}}{b c (n+1) \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x}} \]

[Out]

f*(a+b*arccosh(c*x))^(1+n)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/b/c/(1+n)/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2)+1/2*g*(a
+b*arccosh(c*x))^n*GAMMA(1+n,(-a-b*arccosh(c*x))/b)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/exp(a/b)/(((-a-b*arccosh(c
*x))/b)^n)/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2)-1/2*exp(a/b)*g*(a+b*arccosh(c*x))^n*GAMMA(1+n,(a+b*arccosh(c*x
))/b)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/(((a+b*arccosh(c*x))/b)^n)/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.69, antiderivative size = 248, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {5837, 5832, 3317, 3307, 2181} \[ \frac {g e^{-\frac {a}{b}} \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x}}-\frac {g e^{a/b} \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x}}+\frac {f \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^{n+1}}{b c (n+1) \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x}} \]

Warning: Unable to verify antiderivative.

[In]

Int[((f + g*x)*(a + b*ArcCosh[c*x])^n)/(Sqrt[d1 + c*d1*x]*Sqrt[d2 - c*d2*x]),x]

[Out]

(f*Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])^(1 + n))/(b*c*(1 + n)*Sqrt[d1 + c*d1*x]*Sqrt[d2 - c*d2*x]) + (g*Sqrt
[1 - c^2*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)])/(2*c^2*E^(a/b)*Sqrt[d1 + c*d1*x]
*Sqrt[d2 - c*d2*x]*(-((a + b*ArcCosh[c*x])/b))^n) - (E^(a/b)*g*Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[
1 + n, (a + b*ArcCosh[c*x])/b])/(2*c^2*Sqrt[d1 + c*d1*x]*Sqrt[d2 - c*d2*x]*((a + b*ArcCosh[c*x])/b)^n)

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3317

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] ||
IGtQ[m, 0] || NeQ[a^2 - b^2, 0])

Rule 5832

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_
) + (e2_.)*(x_)]), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*(c*f + g*Cosh[x])^m,
x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2
, 0] && IntegerQ[m] && GtQ[d1, 0] && LtQ[d2, 0] && (GtQ[m, 0] || IGtQ[n, 0])

Rule 5837

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Dist[((-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(1
- c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 + c*x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b
, c, d1, e1, d2, e2, f, g, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && IntegerQ[p - 1/2
] &&  !(GtQ[d1, 0] && LtQ[d2, 0])

Rubi steps

\begin {align*} \int \frac {(f+g x) \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {(f+g x) \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}\\ &=\frac {\sqrt {1-c^2 x^2} \operatorname {Subst}\left (\int (a+b x)^n (c f+g \cosh (x)) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}\\ &=\frac {\sqrt {1-c^2 x^2} \operatorname {Subst}\left (\int \left (c f (a+b x)^n+g (a+b x)^n \cosh (x)\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}\\ &=\frac {f \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{b c (1+n) \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}+\frac {\left (g \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x)^n \cosh (x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}\\ &=\frac {f \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{b c (1+n) \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}+\frac {\left (g \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int e^{-x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}+\frac {\left (g \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int e^x (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{2 c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}\\ &=\frac {f \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{b c (1+n) \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}+\frac {e^{-\frac {a}{b}} g \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}-\frac {e^{a/b} g \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt {\text {d1}+c \text {d1} x} \sqrt {\text {d2}-c \text {d2} x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.17, size = 219, normalized size = 0.84 \[ \frac {e^{-\frac {a}{b}} \sqrt {\frac {c x-1}{c x+1}} \sqrt {c \text {d1} x+\text {d1}} \sqrt {\text {d2}-c \text {d2} x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-n} \left (-2 c f e^{a/b} \left (a+b \cosh ^{-1}(c x)\right ) \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n-b g (n+1) \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \Gamma \left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )+b g (n+1) e^{\frac {2 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \Gamma \left (n+1,\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )}{2 b c^2 \text {d1} \text {d2} (n+1) (c x-1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((f + g*x)*(a + b*ArcCosh[c*x])^n)/(Sqrt[d1 + c*d1*x]*Sqrt[d2 - c*d2*x]),x]

[Out]

(Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d1 + c*d1*x]*Sqrt[d2 - c*d2*x]*(a + b*ArcCosh[c*x])^n*(-2*c*E^(a/b)*f*(a + b*
ArcCosh[c*x])*(-((a + b*ArcCosh[c*x])^2/b^2))^n + b*E^((2*a)/b)*g*(1 + n)*(-((a + b*ArcCosh[c*x])/b))^n*Gamma[
1 + n, a/b + ArcCosh[c*x]] - b*g*(1 + n)*(a/b + ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)]))/(2*b
*c^2*d1*d2*E^(a/b)*(1 + n)*(-1 + c*x)*(-((a + b*ArcCosh[c*x])^2/b^2))^n)

________________________________________________________________________________________

fricas [F]  time = 1.17, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {c d_{1} x + d_{1}} \sqrt {-c d_{2} x + d_{2}} {\left (g x + f\right )} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{n}}{c^{2} d_{1} d_{2} x^{2} - d_{1} d_{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))^n/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(c*d1*x + d1)*sqrt(-c*d2*x + d2)*(g*x + f)*(b*arccosh(c*x) + a)^n/(c^2*d1*d2*x^2 - d1*d2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))^n/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep)]Simplification assuming d1 near 0Simplification assuming t_nostep near 0Simplification assuming d1
 near 0Simplification assuming t_nostep near 0Simplification assuming d1 near 0Simplification assuming t_noste
p near 0Simplification assuming d1 near 0Simplification assuming t_nostep near 0Simplification assuming a near
 0Simplification assuming d1 near 0Simplification assuming t_nostep near 0Simplification assuming d1 near 0Sim
plification assuming t_nostep near 0Simplification assuming a near 0Simplification assuming d1 near 0Simplific
ation assuming t_nostep near 0Simplification assuming d1 near 0Simplification assuming t_nostep near 0Simplifi
cation assuming d1 near 0Simplification assuming t_nostep near 0Simplification assuming d1 near 0Simplificatio
n assuming t_nostep near 0Simplification assuming a near 0Simplification assuming d1 near 0Simplification assu
ming t_nostep near 0Simplification assuming d1 near 0Simplification assuming t_nostep near 0Simplification ass
uming a near 0Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2
-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nost
ep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_
nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d
1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign
(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(
sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*
pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)>
(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)
/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nostep^4
)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_nost
ep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^2-t_
nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nostep^
2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t_nos
tep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*d1*t
_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sign(2*
d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Unable to check sign: (8*pi/(sig
n(2*d1*t_nostep^2-t_nostep^4)+1)/2)>(-8*pi/(sign(2*d1*t_nostep^2-t_nostep^4)+1)/2)Evaluation time: 17.66sym2po
ly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 1.17, size = 0, normalized size = 0.00 \[ \int \frac {\left (g x +f \right ) \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{n}}{\sqrt {c \mathit {d1} x +\mathit {d1}}\, \sqrt {-c \mathit {d2} x +\mathit {d2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arccosh(c*x))^n/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2),x)

[Out]

int((g*x+f)*(a+b*arccosh(c*x))^n/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (g x + f\right )} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{n}}{\sqrt {c d_{1} x + d_{1}} \sqrt {-c d_{2} x + d_{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))^n/(c*d1*x+d1)^(1/2)/(-c*d2*x+d2)^(1/2),x, algorithm="maxima")

[Out]

integrate((g*x + f)*(b*arccosh(c*x) + a)^n/(sqrt(c*d1*x + d1)*sqrt(-c*d2*x + d2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (f+g\,x\right )\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^n}{\sqrt {d_{1}+c\,d_{1}\,x}\,\sqrt {d_{2}-c\,d_{2}\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)*(a + b*acosh(c*x))^n)/((d1 + c*d1*x)^(1/2)*(d2 - c*d2*x)^(1/2)),x)

[Out]

int(((f + g*x)*(a + b*acosh(c*x))^n)/((d1 + c*d1*x)^(1/2)*(d2 - c*d2*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{n} \left (f + g x\right )}{\sqrt {d_{1} \left (c x + 1\right )} \sqrt {- d_{2} \left (c x - 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*acosh(c*x))**n/(c*d1*x+d1)**(1/2)/(-c*d2*x+d2)**(1/2),x)

[Out]

Integral((a + b*acosh(c*x))**n*(f + g*x)/(sqrt(d1*(c*x + 1))*sqrt(-d2*(c*x - 1))), x)

________________________________________________________________________________________