3.68 \(\int \frac {(f+g x) (a+b \cosh ^{-1}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=136 \[ \frac {f \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt {d-c^2 d x^2}}-\frac {g (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt {d-c^2 d x^2}}-\frac {b g x \sqrt {c x-1} \sqrt {c x+1}}{c \sqrt {d-c^2 d x^2}} \]

[Out]

-g*(-c*x+1)*(c*x+1)*(a+b*arccosh(c*x))/c^2/(-c^2*d*x^2+d)^(1/2)-b*g*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^
2+d)^(1/2)+1/2*f*(a+b*arccosh(c*x))^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/b/c/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.47, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {5836, 5822, 5676, 5718, 8} \[ \frac {f \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt {d-c^2 d x^2}}-\frac {g (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt {d-c^2 d x^2}}-\frac {b g x \sqrt {c x-1} \sqrt {c x+1}}{c \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

-((b*g*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2])) - (g*(1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))
/(c^2*Sqrt[d - c^2*d*x^2]) + (f*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(2*b*c*Sqrt[d - c^2*d*x^2
])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rule 5822

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, (f + g*x
)^m, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m,
0] && IntegerQ[p + 1/2] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p, -1]) || GtQ[p, 0] |
| EqQ[m, 1] || (EqQ[m, 2] && LtQ[p, -2]))

Rule 5836

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Dist[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f + g*x
)^m*(1 + c*x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d
 + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2]

Rubi steps

\begin {align*} \int \frac {(f+g x) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {(f+g x) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \left (\frac {f \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}}+\frac {g x \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}}\right ) \, dx}{\sqrt {d-c^2 d x^2}}\\ &=\frac {\left (f \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}+\frac {\left (g \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {g (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt {d-c^2 d x^2}}-\frac {\left (b g \sqrt {-1+c x} \sqrt {1+c x}\right ) \int 1 \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=-\frac {b g x \sqrt {-1+c x} \sqrt {1+c x}}{c \sqrt {d-c^2 d x^2}}-\frac {g (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.70, size = 172, normalized size = 1.26 \[ \frac {-\frac {2 a c f \tan ^{-1}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (c^2 x^2-1\right )}\right )}{\sqrt {d}}-\frac {2 a g \sqrt {d-c^2 d x^2}}{d}+\frac {b c f \sqrt {\frac {c x-1}{c x+1}} (c x+1) \cosh ^{-1}(c x)^2}{\sqrt {d-c^2 d x^2}}+\frac {2 b g \sqrt {d-c^2 d x^2} \left (\frac {c x}{\sqrt {c x-1} \sqrt {c x+1}}-\cosh ^{-1}(c x)\right )}{d}}{2 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

((-2*a*g*Sqrt[d - c^2*d*x^2])/d + (2*b*g*Sqrt[d - c^2*d*x^2]*((c*x)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - ArcCosh[c
*x]))/d + (b*c*f*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*ArcCosh[c*x]^2)/Sqrt[d - c^2*d*x^2] - (2*a*c*f*ArcTan[(c
*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))])/Sqrt[d])/(2*c^2)

________________________________________________________________________________________

fricas [F]  time = 0.58, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (a g x + a f + {\left (b g x + b f\right )} \operatorname {arcosh}\left (c x\right )\right )}}{c^{2} d x^{2} - d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(a*g*x + a*f + (b*g*x + b*f)*arccosh(c*x))/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (g x + f\right )} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((g*x + f)*(b*arccosh(c*x) + a)/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [A]  time = 0.66, size = 239, normalized size = 1.76 \[ -\frac {a g \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+\frac {a f \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, f \mathrm {arccosh}\left (c x \right )^{2}}{2 d c \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \,\mathrm {arccosh}\left (c x \right ) x^{2}}{d \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \sqrt {c x +1}\, \sqrt {c x -1}\, x}{c d \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, g \,\mathrm {arccosh}\left (c x \right )}{c^{2} d \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a*g/c^2/d*(-c^2*d*x^2+d)^(1/2)+a*f/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/2*b*(-d*(c^2*
x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/c/(c^2*x^2-1)*f*arccosh(c*x)^2-b*(-d*(c^2*x^2-1))^(1/2)*g/d/(c^2*x
^2-1)*arccosh(c*x)*x^2+b*(-d*(c^2*x^2-1))^(1/2)*g/c/d/(c^2*x^2-1)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x+b*(-d*(c^2*x^2
-1))^(1/2)*g/c^2/d/(c^2*x^2-1)*arccosh(c*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a f \arcsin \left (c x\right )}{c \sqrt {d}} - \frac {\sqrt {-c^{2} d x^{2} + d} a g}{c^{2} d} + \int \frac {b g x \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{\sqrt {-c^{2} d x^{2} + d}} + \frac {b f \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

a*f*arcsin(c*x)/(c*sqrt(d)) - sqrt(-c^2*d*x^2 + d)*a*g/(c^2*d) + integrate(b*g*x*log(c*x + sqrt(c*x + 1)*sqrt(
c*x - 1))/sqrt(-c^2*d*x^2 + d) + b*f*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (f+g\,x\right )\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2),x)

[Out]

int(((f + g*x)*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acosh}{\left (c x \right )}\right ) \left (f + g x\right )}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*acosh(c*x))*(f + g*x)/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________