3.271 \(\int \frac {a+b \cosh ^{-1}(\frac {\sqrt {1-c x}}{\sqrt {1+c x}})}{1-c^2 x^2} \, dx\)

Optimal. Leaf size=133 \[ -\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2}{2 b c}-\frac {\log \left (e^{-2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}+1\right ) \left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )}{c}+\frac {b \text {Li}_2\left (-e^{-2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right )}{2 c} \]

[Out]

-1/2*(a+b*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2)))^2/b/c-(a+b*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2)))*ln(1+1/((-c
*x+1)^(1/2)/(c*x+1)^(1/2)+((-c*x+1)^(1/2)/(c*x+1)^(1/2)-1)^(1/2)*((-c*x+1)^(1/2)/(c*x+1)^(1/2)+1)^(1/2))^2)/c+
1/2*b*polylog(2,-1/((-c*x+1)^(1/2)/(c*x+1)^(1/2)+((-c*x+1)^(1/2)/(c*x+1)^(1/2)-1)^(1/2)*((-c*x+1)^(1/2)/(c*x+1
)^(1/2)+1)^(1/2))^2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {206, 6681, 5660, 3718, 2190, 2279, 2391} \[ -\frac {b \text {PolyLog}\left (2,-e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}\right )}{2 c}+\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )^2}{2 b c}-\frac {\log \left (e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )}+1\right ) \left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {c x+1}}\right )\right )}{c} \]

Warning: Unable to verify antiderivative.

[In]

Int[(a + b*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])/(1 - c^2*x^2),x]

[Out]

(a + b*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])^2/(2*b*c) - ((a + b*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])*Log[1 +
 E^(2*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])])/c - (b*PolyLog[2, -E^(2*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])])/
(2*c)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3718

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c + d*x)^(m +
 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(1 + E^(2*(-(I*e) + f*fz*x))), x],
x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5660

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Coth[x], x], x, ArcCosh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 6681

Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^
2), x_Symbol] :> Dist[(2*e*g)/(C*(e*f - d*g)), Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x
]], x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}{1-c^2 x^2} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {a+b \cosh ^{-1}(x)}{x} \, dx,x,\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}{c}\\ &=-\frac {\operatorname {Subst}\left (\int (a+b x) \tanh (x) \, dx,x,\cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{2 b c}-\frac {2 \operatorname {Subst}\left (\int \frac {e^{2 x} (a+b x)}{1+e^{2 x}} \, dx,x,\cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{2 b c}-\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \log \left (1+e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}+\frac {b \operatorname {Subst}\left (\int \log \left (1+e^{2 x}\right ) \, dx,x,\cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )}{c}\\ &=\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{2 b c}-\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \log \left (1+e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}+\frac {b \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{2 c}\\ &=\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right )^2}{2 b c}-\frac {\left (a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )\right ) \log \left (1+e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{c}-\frac {b \text {Li}_2\left (-e^{2 \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}\right )}{2 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 3.16, size = 0, normalized size = 0.00 \[ \int \frac {a+b \cosh ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {1+c x}}\right )}{1-c^2 x^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + b*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])/(1 - c^2*x^2),x]

[Out]

Integrate[(a + b*ArcCosh[Sqrt[1 - c*x]/Sqrt[1 + c*x]])/(1 - c^2*x^2), x]

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {b \operatorname {arcosh}\left (\frac {\sqrt {-c x + 1}}{\sqrt {c x + 1}}\right ) + a}{c^{2} x^{2} - 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2)))/(-c^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-(b*arccosh(sqrt(-c*x + 1)/sqrt(c*x + 1)) + a)/(c^2*x^2 - 1), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2)))/(-c^2*x^2+1),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, choosing root of [1,0,-4,0,%%%{4,[2,2]%%%}] at parameters values [86,-97]Warning, choosing root of [1,0,-
4,0,%%%{4,[2,2]%%%}] at parameters values [-82,7]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur
& l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.01, size = 207, normalized size = 1.56 \[ \frac {a \ln \left (c x +1\right )}{2 c}-\frac {a \ln \left (c x -1\right )}{2 c}+\frac {b \mathrm {arccosh}\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right )^{2}}{2 c}-\frac {b \,\mathrm {arccosh}\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}\right ) \ln \left (1+\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+\sqrt {\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}-1}\, \sqrt {\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+1}\right )^{2}\right )}{c}-\frac {b \polylog \left (2, -\left (\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+\sqrt {\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}-1}\, \sqrt {\frac {\sqrt {-c x +1}}{\sqrt {c x +1}}+1}\right )^{2}\right )}{2 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2)))/(-c^2*x^2+1),x)

[Out]

1/2*a/c*ln(c*x+1)-1/2*a/c*ln(c*x-1)+1/2*b/c*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2))^2-b/c*arccosh((-c*x+1)^(1/2)
/(c*x+1)^(1/2))*ln(1+((-c*x+1)^(1/2)/(c*x+1)^(1/2)+((-c*x+1)^(1/2)/(c*x+1)^(1/2)-1)^(1/2)*((-c*x+1)^(1/2)/(c*x
+1)^(1/2)+1)^(1/2))^2)-1/2*b/c*polylog(2,-((-c*x+1)^(1/2)/(c*x+1)^(1/2)+((-c*x+1)^(1/2)/(c*x+1)^(1/2)-1)^(1/2)
*((-c*x+1)^(1/2)/(c*x+1)^(1/2)+1)^(1/2))^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{8} \, b {\left (\frac {2 \, {\left (\log \left (c x + 1\right ) - \log \left (-c x + 1\right )\right )} \log \left (c x + 1\right ) - \log \left (c x + 1\right )^{2} + 2 \, \log \left (c x + 1\right ) \log \left (-c x + 1\right ) - \log \left (-c x + 1\right )^{2} - 4 \, {\left (\log \left (c x + 1\right ) - \log \left (-c x + 1\right )\right )} \log \left (\sqrt {\sqrt {c x + 1} + \sqrt {-c x + 1}} \sqrt {-\sqrt {c x + 1} + \sqrt {-c x + 1}} + \sqrt {-c x + 1}\right )}{c} + 8 \, \int \frac {{\left (c x + 1\right )} \sqrt {-c x + 1} {\left (\log \left (c x + 1\right ) - \log \left (-c x + 1\right )\right )}}{2 \, {\left ({\left (c^{2} x^{2} - 1\right )} {\left (c x + 1\right )} \sqrt {-c x + 1} - {\left (c^{2} x^{2} - 1\right )} {\left (-c x + 1\right )}^{\frac {3}{2}} + {\left ({\left (c^{2} x^{2} - 1\right )} {\left (c x + 1\right )} + {\left (c^{2} x^{2} - 1\right )} {\left (c x - 1\right )}\right )} \sqrt {\sqrt {c x + 1} + \sqrt {-c x + 1}} \sqrt {-\sqrt {c x + 1} + \sqrt {-c x + 1}}\right )}}\,{d x} + 8 \, \int -\frac {\sqrt {c x + 1} {\left (\log \left (c x + 1\right ) - \log \left (-c x + 1\right )\right )}}{4 \, {\left ({\left (c^{2} x^{2} - 1\right )} \sqrt {c x + 1} + {\left (c^{2} x^{2} - 1\right )} \sqrt {-c x + 1}\right )}}\,{d x} - 8 \, \int \frac {\sqrt {c x + 1} {\left (\log \left (c x + 1\right ) - \log \left (-c x + 1\right )\right )}}{4 \, {\left ({\left (c^{2} x^{2} - 1\right )} \sqrt {c x + 1} - {\left (c^{2} x^{2} - 1\right )} \sqrt {-c x + 1}\right )}}\,{d x}\right )} + \frac {1}{2} \, a {\left (\frac {\log \left (c x + 1\right )}{c} - \frac {\log \left (c x - 1\right )}{c}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh((-c*x+1)^(1/2)/(c*x+1)^(1/2)))/(-c^2*x^2+1),x, algorithm="maxima")

[Out]

-1/8*b*((2*(log(c*x + 1) - log(-c*x + 1))*log(c*x + 1) - log(c*x + 1)^2 + 2*log(c*x + 1)*log(-c*x + 1) - log(-
c*x + 1)^2 - 4*(log(c*x + 1) - log(-c*x + 1))*log(sqrt(sqrt(c*x + 1) + sqrt(-c*x + 1))*sqrt(-sqrt(c*x + 1) + s
qrt(-c*x + 1)) + sqrt(-c*x + 1)))/c + 8*integrate(1/2*(c*x + 1)*sqrt(-c*x + 1)*(log(c*x + 1) - log(-c*x + 1))/
((c^2*x^2 - 1)*(c*x + 1)*sqrt(-c*x + 1) - (c^2*x^2 - 1)*(-c*x + 1)^(3/2) + ((c^2*x^2 - 1)*(c*x + 1) + (c^2*x^2
 - 1)*(c*x - 1))*sqrt(sqrt(c*x + 1) + sqrt(-c*x + 1))*sqrt(-sqrt(c*x + 1) + sqrt(-c*x + 1))), x) + 8*integrate
(-1/4*sqrt(c*x + 1)*(log(c*x + 1) - log(-c*x + 1))/((c^2*x^2 - 1)*sqrt(c*x + 1) + (c^2*x^2 - 1)*sqrt(-c*x + 1)
), x) - 8*integrate(1/4*sqrt(c*x + 1)*(log(c*x + 1) - log(-c*x + 1))/((c^2*x^2 - 1)*sqrt(c*x + 1) - (c^2*x^2 -
 1)*sqrt(-c*x + 1)), x)) + 1/2*a*(log(c*x + 1)/c - log(c*x - 1)/c)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int -\frac {a+b\,\mathrm {acosh}\left (\frac {\sqrt {1-c\,x}}{\sqrt {c\,x+1}}\right )}{c^2\,x^2-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(a + b*acosh((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))/(c^2*x^2 - 1),x)

[Out]

int(-(a + b*acosh((1 - c*x)^(1/2)/(c*x + 1)^(1/2)))/(c^2*x^2 - 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {a}{c^{2} x^{2} - 1}\, dx - \int \frac {b \operatorname {acosh}{\left (\frac {\sqrt {- c x + 1}}{\sqrt {c x + 1}} \right )}}{c^{2} x^{2} - 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh((-c*x+1)**(1/2)/(c*x+1)**(1/2)))/(-c**2*x**2+1),x)

[Out]

-Integral(a/(c**2*x**2 - 1), x) - Integral(b*acosh(sqrt(-c*x + 1)/sqrt(c*x + 1))/(c**2*x**2 - 1), x)

________________________________________________________________________________________