3.196 \(\int \frac {1}{(a+b \cosh ^{-1}(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=209 \[ \frac {4 \sqrt {\pi } e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}+\frac {4 \sqrt {\pi } e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}-\frac {8 \sqrt {c+d x-1} \sqrt {c+d x+1}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {2 \sqrt {c+d x-1} \sqrt {c+d x+1}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}} \]

[Out]

-4/15*(d*x+c)/b^2/d/(a+b*arccosh(d*x+c))^(3/2)+4/15*exp(a/b)*erf((a+b*arccosh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/
b^(7/2)/d+4/15*erfi((a+b*arccosh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d/exp(a/b)-2/5*(d*x+c-1)^(1/2)*(d*x+c
+1)^(1/2)/b/d/(a+b*arccosh(d*x+c))^(5/2)-8/15*(d*x+c-1)^(1/2)*(d*x+c+1)^(1/2)/b^3/d/(a+b*arccosh(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.63, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {5864, 5656, 5775, 5781, 3307, 2180, 2204, 2205} \[ \frac {4 \sqrt {\pi } e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}+\frac {4 \sqrt {\pi } e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 \sqrt {c+d x-1} \sqrt {c+d x+1}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}-\frac {2 \sqrt {c+d x-1} \sqrt {c+d x+1}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c + d*x])^(-7/2),x]

[Out]

(-2*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])/(5*b*d*(a + b*ArcCosh[c + d*x])^(5/2)) - (4*(c + d*x))/(15*b^2*d*(a
+ b*ArcCosh[c + d*x])^(3/2)) - (8*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])/(15*b^3*d*Sqrt[a + b*ArcCosh[c + d*x]]
) + (4*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcCosh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d) + (4*Sqrt[Pi]*Erfi[Sqrt[a +
b*ArcCosh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d*E^(a/b))

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5656

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c
*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcCosh[c*x])^(n + 1))/(Sqrt[-1 + c*x]*Sqr
t[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5775

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[((f*x)^m*(a + b*ArcCosh[c*x])^(n + 1))/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] - Dist[(f
*m)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d1
, e1, d2, e2, f, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && LtQ[n, -1] && GtQ[d1, 0] && LtQ[d2, 0]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 5864

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcCosh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \cosh ^{-1}(c+d x)\right )^{7/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (a+b \cosh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}+\frac {2 \operatorname {Subst}\left (\int \frac {x}{\sqrt {-1+x} \sqrt {1+x} \left (a+b \cosh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 \operatorname {Subst}\left (\int \frac {1}{\left (a+b \cosh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}+\frac {8 \operatorname {Subst}\left (\int \frac {x}{\sqrt {-1+x} \sqrt {1+x} \sqrt {a+b \cosh ^{-1}(x)}} \, dx,x,c+d x\right )}{15 b^3 d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}+\frac {8 \operatorname {Subst}\left (\int \frac {\cosh (x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{15 b^3 d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}+\frac {4 \operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{15 b^3 d}+\frac {4 \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{15 b^3 d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}+\frac {8 \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c+d x)}\right )}{15 b^4 d}+\frac {8 \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c+d x)}\right )}{15 b^4 d}\\ &=-\frac {2 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{5 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}}-\frac {4 (c+d x)}{15 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 \sqrt {-1+c+d x} \sqrt {1+c+d x}}{15 b^3 d \sqrt {a+b \cosh ^{-1}(c+d x)}}+\frac {4 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}+\frac {4 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.81, size = 243, normalized size = 1.16 \[ \frac {-\frac {2 e^{-\cosh ^{-1}(c+d x)} \left (a+b \cosh ^{-1}(c+d x)\right ) \left (2 e^{\frac {a}{b}+\cosh ^{-1}(c+d x)} \sqrt {\frac {a}{b}+\cosh ^{-1}(c+d x)} \left (a+b \cosh ^{-1}(c+d x)\right ) \Gamma \left (\frac {1}{2},\frac {a}{b}+\cosh ^{-1}(c+d x)\right )-2 a-2 b \cosh ^{-1}(c+d x)+b\right )}{b^2}-\frac {2 e^{-\frac {a}{b}} \left (a+b \cosh ^{-1}(c+d x)\right ) \left (e^{\frac {a}{b}+\cosh ^{-1}(c+d x)} \left (2 a+2 b \cosh ^{-1}(c+d x)+b\right )+2 b \left (-\frac {a+b \cosh ^{-1}(c+d x)}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {a+b \cosh ^{-1}(c+d x)}{b}\right )\right )}{b^2}-6 \sqrt {\frac {c+d x-1}{c+d x+1}} (c+d x+1)}{15 b d \left (a+b \cosh ^{-1}(c+d x)\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c + d*x])^(-7/2),x]

[Out]

(-6*Sqrt[(-1 + c + d*x)/(1 + c + d*x)]*(1 + c + d*x) - (2*(a + b*ArcCosh[c + d*x])*(-2*a + b - 2*b*ArcCosh[c +
 d*x] + 2*E^(a/b + ArcCosh[c + d*x])*Sqrt[a/b + ArcCosh[c + d*x]]*(a + b*ArcCosh[c + d*x])*Gamma[1/2, a/b + Ar
cCosh[c + d*x]]))/(b^2*E^ArcCosh[c + d*x]) - (2*(a + b*ArcCosh[c + d*x])*(E^(a/b + ArcCosh[c + d*x])*(2*a + b
+ 2*b*ArcCosh[c + d*x]) + 2*b*(-((a + b*ArcCosh[c + d*x])/b))^(3/2)*Gamma[1/2, -((a + b*ArcCosh[c + d*x])/b)])
)/(b^2*E^(a/b)))/(15*b*d*(a + b*ArcCosh[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \operatorname {arcosh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(d*x + c) + a)^(-7/2), x)

________________________________________________________________________________________

maple [F]  time = 0.14, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a +b \,\mathrm {arccosh}\left (d x +c \right )\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arccosh(d*x+c))^(7/2),x)

[Out]

int(1/(a+b*arccosh(d*x+c))^(7/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \operatorname {arcosh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(d*x + c) + a)^(-7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\left (a+b\,\mathrm {acosh}\left (c+d\,x\right )\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*acosh(c + d*x))^(7/2),x)

[Out]

int(1/(a + b*acosh(c + d*x))^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \operatorname {acosh}{\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*acosh(d*x+c))**(7/2),x)

[Out]

Integral((a + b*acosh(c + d*x))**(-7/2), x)

________________________________________________________________________________________