3.145 \(\int \frac {c e+d e x}{(a+b \cosh ^{-1}(c+d x))^3} \, dx\)

Optimal. Leaf size=163 \[ -\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 \left (a+b \cosh ^{-1}(c+d x)\right )}{b}\right )}{b^3 d}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 \left (a+b \cosh ^{-1}(c+d x)\right )}{b}\right )}{b^3 d}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e \sqrt {c+d x-1} \sqrt {c+d x+1} (c+d x)}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2} \]

[Out]

1/2*e/b^2/d/(a+b*arccosh(d*x+c))-e*(d*x+c)^2/b^2/d/(a+b*arccosh(d*x+c))+e*cosh(2*a/b)*Shi(2*(a+b*arccosh(d*x+c
))/b)/b^3/d-e*Chi(2*(a+b*arccosh(d*x+c))/b)*sinh(2*a/b)/b^3/d-1/2*e*(d*x+c)*(d*x+c-1)^(1/2)*(d*x+c+1)^(1/2)/b/
d/(a+b*arccosh(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.51, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {5866, 12, 5668, 5775, 5670, 5448, 3303, 3298, 3301, 5676} \[ -\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )}{b^3 d}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )}{b^3 d}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e \sqrt {c+d x-1} \sqrt {c+d x+1} (c+d x)}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)/(a + b*ArcCosh[c + d*x])^3,x]

[Out]

-(e*Sqrt[-1 + c + d*x]*(c + d*x)*Sqrt[1 + c + d*x])/(2*b*d*(a + b*ArcCosh[c + d*x])^2) + e/(2*b^2*d*(a + b*Arc
Cosh[c + d*x])) - (e*(c + d*x)^2)/(b^2*d*(a + b*ArcCosh[c + d*x])) - (e*CoshIntegral[(2*a)/b + 2*ArcCosh[c + d
*x]]*Sinh[(2*a)/b])/(b^3*d) + (e*Cosh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcCosh[c + d*x]])/(b^3*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5668

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(
a + b*ArcCosh[c*x])^(n + 1))/(b*c*(n + 1)), x] + (-Dist[(c*(m + 1))/(b*(n + 1)), Int[(x^(m + 1)*(a + b*ArcCosh
[c*x])^(n + 1))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x] + Dist[m/(b*c*(n + 1)), Int[(x^(m - 1)*(a + b*ArcCosh[c
*x])^(n + 1))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5775

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[((f*x)^m*(a + b*ArcCosh[c*x])^(n + 1))/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] - Dist[(f
*m)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d1
, e1, d2, e2, f, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && LtQ[n, -1] && GtQ[d1, 0] && LtQ[d2, 0]

Rule 5866

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {c e+d e x}{\left (a+b \cosh ^{-1}(c+d x)\right )^3} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e x}{\left (a+b \cosh ^{-1}(x)\right )^3} \, dx,x,c+d x\right )}{d}\\ &=\frac {e \operatorname {Subst}\left (\int \frac {x}{\left (a+b \cosh ^{-1}(x)\right )^3} \, dx,x,c+d x\right )}{d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}-\frac {e \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {1+x} \left (a+b \cosh ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{2 b d}+\frac {e \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {-1+x} \sqrt {1+x} \left (a+b \cosh ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{b d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {(2 e) \operatorname {Subst}\left (\int \frac {x}{a+b \cosh ^{-1}(x)} \, dx,x,c+d x\right )}{b^2 d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {(2 e) \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b^2 d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {(2 e) \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{2 (a+b x)} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b^2 d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {e \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b^2 d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}+\frac {\left (e \cosh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b^2 d}-\frac {\left (e \sinh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b^2 d}\\ &=-\frac {e \sqrt {-1+c+d x} (c+d x) \sqrt {1+c+d x}}{2 b d \left (a+b \cosh ^{-1}(c+d x)\right )^2}+\frac {e}{2 b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e (c+d x)^2}{b^2 d \left (a+b \cosh ^{-1}(c+d x)\right )}-\frac {e \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right ) \sinh \left (\frac {2 a}{b}\right )}{b^3 d}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )}{b^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.33, size = 127, normalized size = 0.78 \[ \frac {e \left (-\frac {b^2 \sqrt {c+d x-1} (c+d x) \sqrt {c+d x+1}}{\left (a+b \cosh ^{-1}(c+d x)\right )^2}-2 \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\cosh ^{-1}(c+d x)\right )\right )+2 \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\cosh ^{-1}(c+d x)\right )\right )+\frac {b \left (1-2 (c+d x)^2\right )}{a+b \cosh ^{-1}(c+d x)}\right )}{2 b^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)/(a + b*ArcCosh[c + d*x])^3,x]

[Out]

(e*(-((b^2*Sqrt[-1 + c + d*x]*(c + d*x)*Sqrt[1 + c + d*x])/(a + b*ArcCosh[c + d*x])^2) + (b*(1 - 2*(c + d*x)^2
))/(a + b*ArcCosh[c + d*x]) - 2*CoshIntegral[2*(a/b + ArcCosh[c + d*x])]*Sinh[(2*a)/b] + 2*Cosh[(2*a)/b]*SinhI
ntegral[2*(a/b + ArcCosh[c + d*x])]))/(2*b^3*d)

________________________________________________________________________________________

fricas [F]  time = 0.61, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {d e x + c e}{b^{3} \operatorname {arcosh}\left (d x + c\right )^{3} + 3 \, a b^{2} \operatorname {arcosh}\left (d x + c\right )^{2} + 3 \, a^{2} b \operatorname {arcosh}\left (d x + c\right ) + a^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((d*e*x + c*e)/(b^3*arccosh(d*x + c)^3 + 3*a*b^2*arccosh(d*x + c)^2 + 3*a^2*b*arccosh(d*x + c) + a^3),
 x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d e x + c e}{{\left (b \operatorname {arcosh}\left (d x + c\right ) + a\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)/(b*arccosh(d*x + c) + a)^3, x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 254, normalized size = 1.56 \[ \frac {-\frac {\left (-2 \sqrt {d x +c +1}\, \sqrt {d x +c -1}\, \left (d x +c \right )+2 \left (d x +c \right )^{2}-1\right ) e \left (2 b \,\mathrm {arccosh}\left (d x +c \right )+2 a -b \right )}{8 b^{2} \left (b^{2} \mathrm {arccosh}\left (d x +c \right )^{2}+2 a b \,\mathrm {arccosh}\left (d x +c \right )+a^{2}\right )}+\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \Ei \left (1, 2 \,\mathrm {arccosh}\left (d x +c \right )+\frac {2 a}{b}\right )}{2 b^{3}}-\frac {e \left (2 \left (d x +c \right )^{2}-1+2 \sqrt {d x +c +1}\, \sqrt {d x +c -1}\, \left (d x +c \right )\right )}{8 b \left (a +b \,\mathrm {arccosh}\left (d x +c \right )\right )^{2}}-\frac {e \left (2 \left (d x +c \right )^{2}-1+2 \sqrt {d x +c +1}\, \sqrt {d x +c -1}\, \left (d x +c \right )\right )}{4 b^{2} \left (a +b \,\mathrm {arccosh}\left (d x +c \right )\right )}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \Ei \left (1, -2 \,\mathrm {arccosh}\left (d x +c \right )-\frac {2 a}{b}\right )}{2 b^{3}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)/(a+b*arccosh(d*x+c))^3,x)

[Out]

1/d*(-1/8*(-2*(d*x+c+1)^(1/2)*(d*x+c-1)^(1/2)*(d*x+c)+2*(d*x+c)^2-1)*e*(2*b*arccosh(d*x+c)+2*a-b)/b^2/(b^2*arc
cosh(d*x+c)^2+2*a*b*arccosh(d*x+c)+a^2)+1/2*e/b^3*exp(2*a/b)*Ei(1,2*arccosh(d*x+c)+2*a/b)-1/8/b*e*(2*(d*x+c)^2
-1+2*(d*x+c+1)^(1/2)*(d*x+c-1)^(1/2)*(d*x+c))/(a+b*arccosh(d*x+c))^2-1/4/b^2*e*(2*(d*x+c)^2-1+2*(d*x+c+1)^(1/2
)*(d*x+c-1)^(1/2)*(d*x+c))/(a+b*arccosh(d*x+c))-1/2/b^3*e*exp(-2*a/b)*Ei(1,-2*arccosh(d*x+c)-2*a/b))

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c))^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {c\,e+d\,e\,x}{{\left (a+b\,\mathrm {acosh}\left (c+d\,x\right )\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)/(a + b*acosh(c + d*x))^3,x)

[Out]

int((c*e + d*e*x)/(a + b*acosh(c + d*x))^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e \left (\int \frac {c}{a^{3} + 3 a^{2} b \operatorname {acosh}{\left (c + d x \right )} + 3 a b^{2} \operatorname {acosh}^{2}{\left (c + d x \right )} + b^{3} \operatorname {acosh}^{3}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a^{3} + 3 a^{2} b \operatorname {acosh}{\left (c + d x \right )} + 3 a b^{2} \operatorname {acosh}^{2}{\left (c + d x \right )} + b^{3} \operatorname {acosh}^{3}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*acosh(d*x+c))**3,x)

[Out]

e*(Integral(c/(a**3 + 3*a**2*b*acosh(c + d*x) + 3*a*b**2*acosh(c + d*x)**2 + b**3*acosh(c + d*x)**3), x) + Int
egral(d*x/(a**3 + 3*a**2*b*acosh(c + d*x) + 3*a*b**2*acosh(c + d*x)**2 + b**3*acosh(c + d*x)**3), x))

________________________________________________________________________________________