3.133 \(\int \frac {c e+d e x}{a+b \cosh ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=69 \[ \frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 \left (a+b \cosh ^{-1}(c+d x)\right )}{b}\right )}{2 b d}-\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 \left (a+b \cosh ^{-1}(c+d x)\right )}{b}\right )}{2 b d} \]

[Out]

1/2*e*cosh(2*a/b)*Shi(2*(a+b*arccosh(d*x+c))/b)/b/d-1/2*e*Chi(2*(a+b*arccosh(d*x+c))/b)*sinh(2*a/b)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5866, 12, 5670, 5448, 3303, 3298, 3301} \[ \frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )}{2 b d}-\frac {e \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )}{2 b d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)/(a + b*ArcCosh[c + d*x]),x]

[Out]

-(e*CoshIntegral[(2*a)/b + 2*ArcCosh[c + d*x]]*Sinh[(2*a)/b])/(2*b*d) + (e*Cosh[(2*a)/b]*SinhIntegral[(2*a)/b
+ 2*ArcCosh[c + d*x]])/(2*b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5866

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {c e+d e x}{a+b \cosh ^{-1}(c+d x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e x}{a+b \cosh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac {e \operatorname {Subst}\left (\int \frac {x}{a+b \cosh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac {e \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{d}\\ &=\frac {e \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{2 (a+b x)} \, dx,x,\cosh ^{-1}(c+d x)\right )}{d}\\ &=\frac {e \operatorname {Subst}\left (\int \frac {\sinh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{2 d}\\ &=\frac {\left (e \cosh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{2 d}-\frac {\left (e \sinh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c+d x)\right )}{2 d}\\ &=-\frac {e \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right ) \sinh \left (\frac {2 a}{b}\right )}{2 b d}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )}{2 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 61, normalized size = 0.88 \[ -\frac {e \left (\sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )-\cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c+d x)\right )\right )}{2 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)/(a + b*ArcCosh[c + d*x]),x]

[Out]

-1/2*(e*(CoshIntegral[(2*a)/b + 2*ArcCosh[c + d*x]]*Sinh[(2*a)/b] - Cosh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*Arc
Cosh[c + d*x]]))/(b*d)

________________________________________________________________________________________

fricas [F]  time = 0.75, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {d e x + c e}{b \operatorname {arcosh}\left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x, algorithm="fricas")

[Out]

integral((d*e*x + c*e)/(b*arccosh(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d e x + c e}{b \operatorname {arcosh}\left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)/(b*arccosh(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 66, normalized size = 0.96 \[ \frac {\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \Ei \left (1, 2 \,\mathrm {arccosh}\left (d x +c \right )+\frac {2 a}{b}\right )}{4 b}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \Ei \left (1, -2 \,\mathrm {arccosh}\left (d x +c \right )-\frac {2 a}{b}\right )}{4 b}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x)

[Out]

1/d*(1/4*e/b*exp(2*a/b)*Ei(1,2*arccosh(d*x+c)+2*a/b)-1/4*e/b*exp(-2*a/b)*Ei(1,-2*arccosh(d*x+c)-2*a/b))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d e x + c e}{b \operatorname {arcosh}\left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)/(b*arccosh(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {c\,e+d\,e\,x}{a+b\,\mathrm {acosh}\left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)/(a + b*acosh(c + d*x)),x)

[Out]

int((c*e + d*e*x)/(a + b*acosh(c + d*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e \left (\int \frac {c}{a + b \operatorname {acosh}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a + b \operatorname {acosh}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*acosh(d*x+c)),x)

[Out]

e*(Integral(c/(a + b*acosh(c + d*x)), x) + Integral(d*x/(a + b*acosh(c + d*x)), x))

________________________________________________________________________________________