3.55 \(\int \frac {(a+b \sinh ^{-1}(c x)) \log (h (f+g x)^m)}{\sqrt {1+c^2 x^2}} \, dx\)

Optimal. Leaf size=332 \[ \frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}+1\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}+1\right )}{2 b c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}+\frac {b m \text {Li}_3\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}+\frac {b m \text {Li}_3\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{c} \]

[Out]

1/6*m*(a+b*arcsinh(c*x))^3/b^2/c+1/2*(a+b*arcsinh(c*x))^2*ln(h*(g*x+f)^m)/b/c-1/2*m*(a+b*arcsinh(c*x))^2*ln(1+
(c*x+(c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2+g^2)^(1/2)))/b/c-1/2*m*(a+b*arcsinh(c*x))^2*ln(1+(c*x+(c^2*x^2+1)^(1/2
))*g/(c*f+(c^2*f^2+g^2)^(1/2)))/b/c-m*(a+b*arcsinh(c*x))*polylog(2,-(c*x+(c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2+g^
2)^(1/2)))/c-m*(a+b*arcsinh(c*x))*polylog(2,-(c*x+(c^2*x^2+1)^(1/2))*g/(c*f+(c^2*f^2+g^2)^(1/2)))/c+b*m*polylo
g(3,-(c*x+(c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2+g^2)^(1/2)))/c+b*m*polylog(3,-(c*x+(c^2*x^2+1)^(1/2))*g/(c*f+(c^2
*f^2+g^2)^(1/2)))/c

________________________________________________________________________________________

Rubi [A]  time = 0.56, antiderivative size = 332, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {5675, 5838, 5799, 5561, 2190, 2531, 2282, 6589} \[ -\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}\right )}{c}+\frac {b m \text {PolyLog}\left (3,-\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}+\frac {b m \text {PolyLog}\left (3,-\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}\right )}{c}+\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}+1\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}+1\right )}{2 b c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*ArcSinh[c*x])*Log[h*(f + g*x)^m])/Sqrt[1 + c^2*x^2],x]

[Out]

(m*(a + b*ArcSinh[c*x])^3)/(6*b^2*c) - (m*(a + b*ArcSinh[c*x])^2*Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^
2 + g^2])])/(2*b*c) - (m*(a + b*ArcSinh[c*x])^2*Log[1 + (E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2])])/(2*b*
c) + ((a + b*ArcSinh[c*x])^2*Log[h*(f + g*x)^m])/(2*b*c) - (m*(a + b*ArcSinh[c*x])*PolyLog[2, -((E^ArcSinh[c*x
]*g)/(c*f - Sqrt[c^2*f^2 + g^2]))])/c - (m*(a + b*ArcSinh[c*x])*PolyLog[2, -((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^
2*f^2 + g^2]))])/c + (b*m*PolyLog[3, -((E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^2]))])/c + (b*m*PolyLog[3, -
((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2]))])/c

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 5561

Int[(Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symbol] :
> -Simp[(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(c + d*x))/(a - Rt[a^2 + b^2, 2] + b*E^(c +
d*x)), x] + Int[((e + f*x)^m*E^(c + d*x))/(a + Rt[a^2 + b^2, 2] + b*E^(c + d*x)), x]) /; FreeQ[{a, b, c, d, e,
 f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5799

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[((a + b*x)^n*Cosh[x
])/(c*d + e*Sinh[x]), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 5838

Int[(Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.))/Sqrt[(d_) + (e_.)*(x_)^2
], x_Symbol] :> Simp[(Log[h*(f + g*x)^m]*(a + b*ArcSinh[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(g*m)/
(b*c*Sqrt[d]*(n + 1)), Int[(a + b*ArcSinh[c*x])^(n + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}
, x] && EqQ[e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c x)\right ) \log \left (h (f+g x)^m\right )}{\sqrt {1+c^2 x^2}} \, dx &=\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}-\frac {(g m) \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{f+g x} \, dx}{2 b c}\\ &=\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}-\frac {(g m) \operatorname {Subst}\left (\int \frac {(a+b x)^2 \cosh (x)}{c f+g \sinh (x)} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c}\\ &=\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}-\frac {(g m) \operatorname {Subst}\left (\int \frac {e^x (a+b x)^2}{c f+e^x g-\sqrt {c^2 f^2+g^2}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c}-\frac {(g m) \operatorname {Subst}\left (\int \frac {e^x (a+b x)^2}{c f+e^x g+\sqrt {c^2 f^2+g^2}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c}\\ &=\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{2 b c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}+\frac {m \operatorname {Subst}\left (\int (a+b x) \log \left (1+\frac {e^x g}{c f-\sqrt {c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c}+\frac {m \operatorname {Subst}\left (\int (a+b x) \log \left (1+\frac {e^x g}{c f+\sqrt {c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c}\\ &=\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{2 b c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{c}+\frac {(b m) \operatorname {Subst}\left (\int \text {Li}_2\left (-\frac {e^x g}{c f-\sqrt {c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c}+\frac {(b m) \operatorname {Subst}\left (\int \text {Li}_2\left (-\frac {e^x g}{c f+\sqrt {c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c}\\ &=\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{2 b c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{c}+\frac {(b m) \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (\frac {g x}{-c f+\sqrt {c^2 f^2+g^2}}\right )}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{c}+\frac {(b m) \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {g x}{c f+\sqrt {c^2 f^2+g^2}}\right )}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{c}\\ &=\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b^2 c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{2 b c}+\frac {\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )}{2 b c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}-\frac {m \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{c}+\frac {b m \text {Li}_3\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{c}+\frac {b m \text {Li}_3\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 304, normalized size = 0.92 \[ \frac {2 b m \left (b \text {Li}_3\left (\frac {e^{\sinh ^{-1}(c x)} g}{\sqrt {c^2 f^2+g^2}-c f}\right )-\left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (\frac {e^{\sinh ^{-1}(c x)} g}{\sqrt {c^2 f^2+g^2}-c f}\right )\right )+2 b m \left (b \text {Li}_3\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )-\left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )\right )-m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}+1\right )-m \left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}+1\right )+\left (a+b \sinh ^{-1}(c x)\right )^2 \log \left (h (f+g x)^m\right )+\frac {m \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b}}{2 b c} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*ArcSinh[c*x])*Log[h*(f + g*x)^m])/Sqrt[1 + c^2*x^2],x]

[Out]

((m*(a + b*ArcSinh[c*x])^3)/(3*b) - m*(a + b*ArcSinh[c*x])^2*Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 +
g^2])] - m*(a + b*ArcSinh[c*x])^2*Log[1 + (E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2])] + (a + b*ArcSinh[c*x
])^2*Log[h*(f + g*x)^m] + 2*b*m*(-((a + b*ArcSinh[c*x])*PolyLog[2, (E^ArcSinh[c*x]*g)/(-(c*f) + Sqrt[c^2*f^2 +
 g^2])]) + b*PolyLog[3, (E^ArcSinh[c*x]*g)/(-(c*f) + Sqrt[c^2*f^2 + g^2])]) + 2*b*m*(-((a + b*ArcSinh[c*x])*Po
lyLog[2, -((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2]))]) + b*PolyLog[3, -((E^ArcSinh[c*x]*g)/(c*f + Sqrt[c
^2*f^2 + g^2]))]))/(2*b*c)

________________________________________________________________________________________

fricas [F]  time = 0.55, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} \log \left ({\left (g x + f\right )}^{m} h\right )}{\sqrt {c^{2} x^{2} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*log(h*(g*x+f)^m)/(c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral((b*arcsinh(c*x) + a)*log((g*x + f)^m*h)/sqrt(c^2*x^2 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} \log \left ({\left (g x + f\right )}^{m} h\right )}{\sqrt {c^{2} x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*log(h*(g*x+f)^m)/(c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)*log((g*x + f)^m*h)/sqrt(c^2*x^2 + 1), x)

________________________________________________________________________________________

maple [F]  time = 2.13, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \arcsinh \left (c x \right )\right ) \ln \left (h \left (g x +f \right )^{m}\right )}{\sqrt {c^{2} x^{2}+1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))*ln(h*(g*x+f)^m)/(c^2*x^2+1)^(1/2),x)

[Out]

int((a+b*arcsinh(c*x))*ln(h*(g*x+f)^m)/(c^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} \log \left ({\left (g x + f\right )}^{m} h\right )}{\sqrt {c^{2} x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*log(h*(g*x+f)^m)/(c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(c*x) + a)*log((g*x + f)^m*h)/sqrt(c^2*x^2 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\ln \left (h\,{\left (f+g\,x\right )}^m\right )\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}{\sqrt {c^2\,x^2+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(h*(f + g*x)^m)*(a + b*asinh(c*x)))/(c^2*x^2 + 1)^(1/2),x)

[Out]

int((log(h*(f + g*x)^m)*(a + b*asinh(c*x)))/(c^2*x^2 + 1)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \log {\left (h \left (f + g x\right )^{m} \right )}}{\sqrt {c^{2} x^{2} + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))*ln(h*(g*x+f)**m)/(c**2*x**2+1)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))*log(h*(f + g*x)**m)/sqrt(c**2*x**2 + 1), x)

________________________________________________________________________________________