3.52 \(\int \frac {a+b \sinh ^{-1}(c x)}{(f+g x)^2 \sqrt {d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=444 \[ -\frac {g \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right ) (f+g x)}+\frac {c^2 f \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}+1\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}-\frac {c^2 f \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}+1\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}+\frac {b c^2 f \sqrt {c^2 x^2+1} \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}-\frac {b c^2 f \sqrt {c^2 x^2+1} \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}+\frac {b c \sqrt {c^2 x^2+1} \log (f+g x)}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )} \]

[Out]

-g*(c^2*x^2+1)*(a+b*arcsinh(c*x))/(c^2*f^2+g^2)/(g*x+f)/(c^2*d*x^2+d)^(1/2)+b*c*ln(g*x+f)*(c^2*x^2+1)^(1/2)/(c
^2*f^2+g^2)/(c^2*d*x^2+d)^(1/2)+c^2*f*(a+b*arcsinh(c*x))*ln(1+(c*x+(c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2+g^2)^(1/
2)))*(c^2*x^2+1)^(1/2)/(c^2*f^2+g^2)^(3/2)/(c^2*d*x^2+d)^(1/2)-c^2*f*(a+b*arcsinh(c*x))*ln(1+(c*x+(c^2*x^2+1)^
(1/2))*g/(c*f+(c^2*f^2+g^2)^(1/2)))*(c^2*x^2+1)^(1/2)/(c^2*f^2+g^2)^(3/2)/(c^2*d*x^2+d)^(1/2)+b*c^2*f*polylog(
2,-(c*x+(c^2*x^2+1)^(1/2))*g/(c*f-(c^2*f^2+g^2)^(1/2)))*(c^2*x^2+1)^(1/2)/(c^2*f^2+g^2)^(3/2)/(c^2*d*x^2+d)^(1
/2)-b*c^2*f*polylog(2,-(c*x+(c^2*x^2+1)^(1/2))*g/(c*f+(c^2*f^2+g^2)^(1/2)))*(c^2*x^2+1)^(1/2)/(c^2*f^2+g^2)^(3
/2)/(c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.66, antiderivative size = 444, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5835, 5831, 3324, 3322, 2264, 2190, 2279, 2391, 2668, 31} \[ \frac {b c^2 f \sqrt {c^2 x^2+1} \text {PolyLog}\left (2,-\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}-\frac {b c^2 f \sqrt {c^2 x^2+1} \text {PolyLog}\left (2,-\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}-\frac {g \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right ) (f+g x)}+\frac {c^2 f \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}+1\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}-\frac {c^2 f \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}+1\right )}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2}}+\frac {b c \sqrt {c^2 x^2+1} \log (f+g x)}{\sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])/((f + g*x)^2*Sqrt[d + c^2*d*x^2]),x]

[Out]

-((g*(1 + c^2*x^2)*(a + b*ArcSinh[c*x]))/((c^2*f^2 + g^2)*(f + g*x)*Sqrt[d + c^2*d*x^2])) + (c^2*f*Sqrt[1 + c^
2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^2])])/((c^2*f^2 + g^2)^(3/2)*Sq
rt[d + c^2*d*x^2]) - (c^2*f*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])*Log[1 + (E^ArcSinh[c*x]*g)/(c*f + Sqrt[c^2*
f^2 + g^2])])/((c^2*f^2 + g^2)^(3/2)*Sqrt[d + c^2*d*x^2]) + (b*c*Sqrt[1 + c^2*x^2]*Log[f + g*x])/((c^2*f^2 + g
^2)*Sqrt[d + c^2*d*x^2]) + (b*c^2*f*Sqrt[1 + c^2*x^2]*PolyLog[2, -((E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^
2]))])/((c^2*f^2 + g^2)^(3/2)*Sqrt[d + c^2*d*x^2]) - (b*c^2*f*Sqrt[1 + c^2*x^2]*PolyLog[2, -((E^ArcSinh[c*x]*g
)/(c*f + Sqrt[c^2*f^2 + g^2]))])/((c^2*f^2 + g^2)^(3/2)*Sqrt[d + c^2*d*x^2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 3322

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Dist[2,
Int[((c + d*x)^m*E^(-(I*e) + f*fz*x))/(-(I*b) + 2*a*E^(-(I*e) + f*fz*x) + I*b*E^(2*(-(I*e) + f*fz*x))), x], x]
 /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3324

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*(c + d*x)^m*Cos[
e + f*x])/(f*(a^2 - b^2)*(a + b*Sin[e + f*x])), x] + (Dist[a/(a^2 - b^2), Int[(c + d*x)^m/(a + b*Sin[e + f*x])
, x], x] - Dist[(b*d*m)/(f*(a^2 - b^2)), Int[((c + d*x)^(m - 1)*Cos[e + f*x])/(a + b*Sin[e + f*x]), x], x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 5831

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
 :> Dist[1/(c^(m + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*(c*f + g*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{
a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0])

Rule 5835

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Dist[(d^IntPart[p]*(d + e*x^2)^FracPart[p])/(1 + c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 + c^2*x^2)^p*(a +
 b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IntegerQ[p
 - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {a+b \sinh ^{-1}(c x)}{(f+g x)^2 \sqrt {d+c^2 d x^2}} \, dx &=\frac {\sqrt {1+c^2 x^2} \int \frac {a+b \sinh ^{-1}(c x)}{(f+g x)^2 \sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}\\ &=\frac {\left (c \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {a+b x}{(c f+g \sinh (x))^2} \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}}\\ &=-\frac {g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) (f+g x) \sqrt {d+c^2 d x^2}}+\frac {\left (c^2 f \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {a+b x}{c f+g \sinh (x)} \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}+\frac {\left (b c g \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\cosh (x)}{c f+g \sinh (x)} \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}\\ &=-\frac {g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) (f+g x) \sqrt {d+c^2 d x^2}}+\frac {\left (b c \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{c f+x} \, dx,x,c g x\right )}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}+\frac {\left (2 c^2 f \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{2 c e^x f-g+e^{2 x} g} \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}\\ &=-\frac {g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) (f+g x) \sqrt {d+c^2 d x^2}}+\frac {b c \sqrt {1+c^2 x^2} \log (f+g x)}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}+\frac {\left (2 c^2 f g \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{2 c f+2 e^x g-2 \sqrt {c^2 f^2+g^2}} \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}-\frac {\left (2 c^2 f g \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{2 c f+2 e^x g+2 \sqrt {c^2 f^2+g^2}} \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}\\ &=-\frac {g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) (f+g x) \sqrt {d+c^2 d x^2}}+\frac {c^2 f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}-\frac {c^2 f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}+\frac {b c \sqrt {1+c^2 x^2} \log (f+g x)}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}-\frac {\left (b c^2 f \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+\frac {2 e^x g}{2 c f-2 \sqrt {c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}+\frac {\left (b c^2 f \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+\frac {2 e^x g}{2 c f+2 \sqrt {c^2 f^2+g^2}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}\\ &=-\frac {g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) (f+g x) \sqrt {d+c^2 d x^2}}+\frac {c^2 f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}-\frac {c^2 f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}+\frac {b c \sqrt {1+c^2 x^2} \log (f+g x)}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}-\frac {\left (b c^2 f \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 g x}{2 c f-2 \sqrt {c^2 f^2+g^2}}\right )}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}+\frac {\left (b c^2 f \sqrt {1+c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 g x}{2 c f+2 \sqrt {c^2 f^2+g^2}}\right )}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}\\ &=-\frac {g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\left (c^2 f^2+g^2\right ) (f+g x) \sqrt {d+c^2 d x^2}}+\frac {c^2 f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}-\frac {c^2 f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \log \left (1+\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}+\frac {b c \sqrt {1+c^2 x^2} \log (f+g x)}{\left (c^2 f^2+g^2\right ) \sqrt {d+c^2 d x^2}}+\frac {b c^2 f \sqrt {1+c^2 x^2} \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f-\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}-\frac {b c^2 f \sqrt {1+c^2 x^2} \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )}{\left (c^2 f^2+g^2\right )^{3/2} \sqrt {d+c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.17, size = 448, normalized size = 1.01 \[ \frac {-a g \left (c^2 d x^2+d\right ) \sqrt {c^2 f^2+g^2}-a c^2 \sqrt {d} f \sqrt {c^2 d x^2+d} (f+g x) \log \left (\sqrt {d} \sqrt {c^2 d x^2+d} \sqrt {c^2 f^2+g^2}+d \left (g-c^2 f x\right )\right )+a c^2 \sqrt {d} f \sqrt {c^2 d x^2+d} (f+g x) \log (f+g x)-b d \sqrt {c^2 x^2+1} \left (-c^2 f (f+g x) \text {Li}_2\left (\frac {e^{\sinh ^{-1}(c x)} g}{\sqrt {c^2 f^2+g^2}-c f}\right )+c^2 f (f+g x) \text {Li}_2\left (-\frac {e^{\sinh ^{-1}(c x)} g}{c f+\sqrt {c^2 f^2+g^2}}\right )+g \sqrt {c^2 x^2+1} \sqrt {c^2 f^2+g^2} \sinh ^{-1}(c x)-c \sqrt {c^2 f^2+g^2} (f+g x) \log (c (f+g x))+c^2 (-f) \sinh ^{-1}(c x) (f+g x) \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{c f-\sqrt {c^2 f^2+g^2}}+1\right )+c^2 f \sinh ^{-1}(c x) (f+g x) \log \left (\frac {g e^{\sinh ^{-1}(c x)}}{\sqrt {c^2 f^2+g^2}+c f}+1\right )\right )}{d \sqrt {c^2 d x^2+d} \left (c^2 f^2+g^2\right )^{3/2} (f+g x)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c*x])/((f + g*x)^2*Sqrt[d + c^2*d*x^2]),x]

[Out]

(-(a*g*Sqrt[c^2*f^2 + g^2]*(d + c^2*d*x^2)) + a*c^2*Sqrt[d]*f*(f + g*x)*Sqrt[d + c^2*d*x^2]*Log[f + g*x] - a*c
^2*Sqrt[d]*f*(f + g*x)*Sqrt[d + c^2*d*x^2]*Log[d*(g - c^2*f*x) + Sqrt[d]*Sqrt[c^2*f^2 + g^2]*Sqrt[d + c^2*d*x^
2]] - b*d*Sqrt[1 + c^2*x^2]*(g*Sqrt[c^2*f^2 + g^2]*Sqrt[1 + c^2*x^2]*ArcSinh[c*x] - c^2*f*(f + g*x)*ArcSinh[c*
x]*Log[1 + (E^ArcSinh[c*x]*g)/(c*f - Sqrt[c^2*f^2 + g^2])] + c^2*f*(f + g*x)*ArcSinh[c*x]*Log[1 + (E^ArcSinh[c
*x]*g)/(c*f + Sqrt[c^2*f^2 + g^2])] - c*Sqrt[c^2*f^2 + g^2]*(f + g*x)*Log[c*(f + g*x)] - c^2*f*(f + g*x)*PolyL
og[2, (E^ArcSinh[c*x]*g)/(-(c*f) + Sqrt[c^2*f^2 + g^2])] + c^2*f*(f + g*x)*PolyLog[2, -((E^ArcSinh[c*x]*g)/(c*
f + Sqrt[c^2*f^2 + g^2]))]))/(d*(c^2*f^2 + g^2)^(3/2)*(f + g*x)*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.55, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{c^{2} d g^{2} x^{4} + 2 \, c^{2} d f g x^{3} + 2 \, d f g x + d f^{2} + {\left (c^{2} d f^{2} + d g^{2}\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(g*x+f)^2/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/(c^2*d*g^2*x^4 + 2*c^2*d*f*g*x^3 + 2*d*f*g*x + d*f^2 + (c^2*
d*f^2 + d*g^2)*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arsinh}\left (c x\right ) + a}{\sqrt {c^{2} d x^{2} + d} {\left (g x + f\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(g*x+f)^2/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)/(sqrt(c^2*d*x^2 + d)*(g*x + f)^2), x)

________________________________________________________________________________________

maple [B]  time = 0.69, size = 1770, normalized size = 3.99 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))/(g*x+f)^2/(c^2*d*x^2+d)^(1/2),x)

[Out]

-a/d/(c^2*f^2+g^2)/(x+f/g)*((x+f/g)^2*c^2*d-2*c^2*d*f/g*(x+f/g)+d*(c^2*f^2+g^2)/g^2)^(1/2)-a/g*c^2*f/(c^2*f^2+
g^2)/(d*(c^2*f^2+g^2)/g^2)^(1/2)*ln((2*d*(c^2*f^2+g^2)/g^2-2*c^2*d*f/g*(x+f/g)+2*(d*(c^2*f^2+g^2)/g^2)^(1/2)*(
(x+f/g)^2*c^2*d-2*c^2*d*f/g*(x+f/g)+d*(c^2*f^2+g^2)/g^2)^(1/2))/(x+f/g))+b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)/
d/(c^2*x^2+1)/(c^2*f^2+g^2)/(g*x+f)*x^3*c^4*f-b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)/d/(c^2*f^2+g^2)/(g*x+f)*x*c
^2*f-b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)/d/(c^2*x^2+1)/(c^2*f^2+g^2)/(g*x+f)*x^2*c^2*g+b*(d*(c^2*x^2+1))^(1/2
)*arcsinh(c*x)/d/(c^2*x^2+1)^(1/2)/(c^2*f^2+g^2)/(g*x+f)*x*c*g+b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)/d/(c^2*x^2
+1)/(c^2*f^2+g^2)/(g*x+f)*x*c^2*f+b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)/d/(c^2*x^2+1)^(1/2)/(c^2*f^2+g^2)/(g*x+
f)*c*f-b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)/d/(c^2*x^2+1)/(c^2*f^2+g^2)/(g*x+f)*g+b*(d*(c^2*x^2+1))^(1/2)*(c^2
*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2*g^4*x^2+2*c^2*f^2*g^2+g^4)*c^2*f*arcsinh(c*x)*(c^2*
f^2+g^2)^(1/2)*ln((-(c*x+(c^2*x^2+1)^(1/2))*g-c*f+(c^2*f^2+g^2)^(1/2))/(-c*f+(c^2*f^2+g^2)^(1/2)))-b*(d*(c^2*x
^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2*g^4*x^2+2*c^2*f^2*g^2+g^4)*c^2*f*a
rcsinh(c*x)*(c^2*f^2+g^2)^(1/2)*ln(((c*x+(c^2*x^2+1)^(1/2))*g+c*f+(c^2*f^2+g^2)^(1/2))/(c*f+(c^2*f^2+g^2)^(1/2
)))-2*b*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2*g^4*x^2+2*c^2*f^2
*g^2+g^4)*c^3*ln(c*x+(c^2*x^2+1)^(1/2))*f^2+b*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2
*g^2*x^2+c^4*f^4+c^2*g^4*x^2+2*c^2*f^2*g^2+g^4)*c^3*ln((c*x+(c^2*x^2+1)^(1/2))^2*g+2*c*f*(c*x+(c^2*x^2+1)^(1/2
))-g)*f^2+b*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2*g^4*x^2+2*c^2
*f^2*g^2+g^4)*c^2*f*(c^2*f^2+g^2)^(1/2)*dilog((-(c*x+(c^2*x^2+1)^(1/2))*g-c*f+(c^2*f^2+g^2)^(1/2))/(-c*f+(c^2*
f^2+g^2)^(1/2)))-b*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2*g^4*x^
2+2*c^2*f^2*g^2+g^4)*c^2*f*(c^2*f^2+g^2)^(1/2)*dilog(((c*x+(c^2*x^2+1)^(1/2))*g+c*f+(c^2*f^2+g^2)^(1/2))/(c*f+
(c^2*f^2+g^2)^(1/2)))-2*b*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2
*g^4*x^2+2*c^2*f^2*g^2+g^4)*c*ln(c*x+(c^2*x^2+1)^(1/2))*g^2+b*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+1)^(1/2)/d/(c^6*f
^4*x^2+2*c^4*f^2*g^2*x^2+c^4*f^4+c^2*g^4*x^2+2*c^2*f^2*g^2+g^4)*c*ln((c*x+(c^2*x^2+1)^(1/2))^2*g+2*c*f*(c*x+(c
^2*x^2+1)^(1/2))-g)*g^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arsinh}\left (c x\right ) + a}{\sqrt {c^{2} d x^{2} + d} {\left (g x + f\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(g*x+f)^2/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(c*x) + a)/(sqrt(c^2*d*x^2 + d)*(g*x + f)^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {asinh}\left (c\,x\right )}{{\left (f+g\,x\right )}^2\,\sqrt {d\,c^2\,x^2+d}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))/((f + g*x)^2*(d + c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*asinh(c*x))/((f + g*x)^2*(d + c^2*d*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {asinh}{\left (c x \right )}}{\sqrt {d \left (c^{2} x^{2} + 1\right )} \left (f + g x\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))/(g*x+f)**2/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))/(sqrt(d*(c**2*x**2 + 1))*(f + g*x)**2), x)

________________________________________________________________________________________