3.304 \(\int \frac {\sinh ^{-1}(\frac {a}{x})}{x^2} \, dx\)

Optimal. Leaf size=29 \[ \frac {\sqrt {\frac {a^2}{x^2}+1}}{a}-\frac {\text {csch}^{-1}\left (\frac {x}{a}\right )}{x} \]

[Out]

-arccsch(x/a)/x+(1+a^2/x^2)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {5892, 6284, 261} \[ \frac {\sqrt {\frac {a^2}{x^2}+1}}{a}-\frac {\text {csch}^{-1}\left (\frac {x}{a}\right )}{x} \]

Antiderivative was successfully verified.

[In]

Int[ArcSinh[a/x]/x^2,x]

[Out]

Sqrt[1 + a^2/x^2]/a - ArcCsch[x/a]/x

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5892

Int[ArcSinh[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCsch[a/c + (b*x^n)/c]^m, x] /
; FreeQ[{a, b, c, n, m}, x]

Rule 6284

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcCsch[c*
x]))/(d*(m + 1)), x] + Dist[(b*d)/(c*(m + 1)), Int[(d*x)^(m - 1)/Sqrt[1 + 1/(c^2*x^2)], x], x] /; FreeQ[{a, b,
 c, d, m}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sinh ^{-1}\left (\frac {a}{x}\right )}{x^2} \, dx &=\int \frac {\text {csch}^{-1}\left (\frac {x}{a}\right )}{x^2} \, dx\\ &=-\frac {\text {csch}^{-1}\left (\frac {x}{a}\right )}{x}-a \int \frac {1}{\sqrt {1+\frac {a^2}{x^2}} x^3} \, dx\\ &=\frac {\sqrt {1+\frac {a^2}{x^2}}}{a}-\frac {\text {csch}^{-1}\left (\frac {x}{a}\right )}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 29, normalized size = 1.00 \[ \frac {\sqrt {\frac {a^2}{x^2}+1}}{a}-\frac {\sinh ^{-1}\left (\frac {a}{x}\right )}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSinh[a/x]/x^2,x]

[Out]

Sqrt[1 + a^2/x^2]/a - ArcSinh[a/x]/x

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 49, normalized size = 1.69 \[ -\frac {a \log \left (\frac {x \sqrt {\frac {a^{2} + x^{2}}{x^{2}}} + a}{x}\right ) - x \sqrt {\frac {a^{2} + x^{2}}{x^{2}}}}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a/x)/x^2,x, algorithm="fricas")

[Out]

-(a*log((x*sqrt((a^2 + x^2)/x^2) + a)/x) - x*sqrt((a^2 + x^2)/x^2))/(a*x)

________________________________________________________________________________________

giac [A]  time = 0.42, size = 39, normalized size = 1.34 \[ -\frac {\log \left (\sqrt {\frac {a^{2}}{x^{2}} + 1} + \frac {a}{x}\right )}{x} + \frac {\sqrt {\frac {a^{2}}{x^{2}} + 1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a/x)/x^2,x, algorithm="giac")

[Out]

-log(sqrt(a^2/x^2 + 1) + a/x)/x + sqrt(a^2/x^2 + 1)/a

________________________________________________________________________________________

maple [A]  time = 0.00, size = 31, normalized size = 1.07 \[ -\frac {\frac {a \arcsinh \left (\frac {a}{x}\right )}{x}-\sqrt {1+\frac {a^{2}}{x^{2}}}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsinh(a/x)/x^2,x)

[Out]

-1/a*(a/x*arcsinh(a/x)-(1+a^2/x^2)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.67, size = 30, normalized size = 1.03 \[ -\frac {\frac {a \operatorname {arsinh}\left (\frac {a}{x}\right )}{x} - \sqrt {\frac {a^{2}}{x^{2}} + 1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a/x)/x^2,x, algorithm="maxima")

[Out]

-(a*arcsinh(a/x)/x - sqrt(a^2/x^2 + 1))/a

________________________________________________________________________________________

mupad [B]  time = 0.23, size = 27, normalized size = 0.93 \[ \frac {\sqrt {\frac {a^2}{x^2}+1}}{a}-\frac {\mathrm {asinh}\left (\frac {a}{x}\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asinh(a/x)/x^2,x)

[Out]

(a^2/x^2 + 1)^(1/2)/a - asinh(a/x)/x

________________________________________________________________________________________

sympy [A]  time = 1.93, size = 20, normalized size = 0.69 \[ \begin {cases} - \frac {\operatorname {asinh}{\left (\frac {a}{x} \right )}}{x} + \frac {\sqrt {\frac {a^{2}}{x^{2}} + 1}}{a} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asinh(a/x)/x**2,x)

[Out]

Piecewise((-asinh(a/x)/x + sqrt(a**2/x**2 + 1)/a, Ne(a, 0)), (0, True))

________________________________________________________________________________________