3.240 \(\int \frac {(a+b \sinh ^{-1}(c+d x))^2}{\sqrt {c e+d e x}} \, dx\)

Optimal. Leaf size=132 \[ \frac {16 b^2 (e (c+d x))^{5/2} \, _3F_2\left (1,\frac {5}{4},\frac {5}{4};\frac {7}{4},\frac {9}{4};-(c+d x)^2\right )}{15 d e^3}-\frac {8 b (e (c+d x))^{3/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-(c+d x)^2\right ) \left (a+b \sinh ^{-1}(c+d x)\right )}{3 d e^2}+\frac {2 \sqrt {e (c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2}{d e} \]

[Out]

-8/3*b*(e*(d*x+c))^(3/2)*(a+b*arcsinh(d*x+c))*hypergeom([1/2, 3/4],[7/4],-(d*x+c)^2)/d/e^2+16/15*b^2*(e*(d*x+c
))^(5/2)*HypergeometricPFQ([1, 5/4, 5/4],[7/4, 9/4],-(d*x+c)^2)/d/e^3+2*(a+b*arcsinh(d*x+c))^2*(e*(d*x+c))^(1/
2)/d/e

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {5865, 5661, 5762} \[ \frac {16 b^2 (e (c+d x))^{5/2} \, _3F_2\left (1,\frac {5}{4},\frac {5}{4};\frac {7}{4},\frac {9}{4};-(c+d x)^2\right )}{15 d e^3}-\frac {8 b (e (c+d x))^{3/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-(c+d x)^2\right ) \left (a+b \sinh ^{-1}(c+d x)\right )}{3 d e^2}+\frac {2 \sqrt {e (c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2}{d e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c + d*x])^2/Sqrt[c*e + d*e*x],x]

[Out]

(2*Sqrt[e*(c + d*x)]*(a + b*ArcSinh[c + d*x])^2)/(d*e) - (8*b*(e*(c + d*x))^(3/2)*(a + b*ArcSinh[c + d*x])*Hyp
ergeometric2F1[1/2, 3/4, 7/4, -(c + d*x)^2])/(3*d*e^2) + (16*b^2*(e*(c + d*x))^(5/2)*HypergeometricPFQ[{1, 5/4
, 5/4}, {7/4, 9/4}, -(c + d*x)^2])/(15*d*e^3)

Rule 5661

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcS
inh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt
[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5762

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x
)^(m + 1)*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -(c^2*x^2)])/(Sqrt[d]*f*(m + 1)),
x] - Simp[(b*c*(f*x)^(m + 2)*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, -(c^2*x^2)])/(Sqrt
[d]*f^2*(m + 1)*(m + 2)), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[d, 0] &&  !IntegerQ[m]

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c+d x)\right )^2}{\sqrt {c e+d e x}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b \sinh ^{-1}(x)\right )^2}{\sqrt {e x}} \, dx,x,c+d x\right )}{d}\\ &=\frac {2 \sqrt {e (c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2}{d e}-\frac {(4 b) \operatorname {Subst}\left (\int \frac {\sqrt {e x} \left (a+b \sinh ^{-1}(x)\right )}{\sqrt {1+x^2}} \, dx,x,c+d x\right )}{d e}\\ &=\frac {2 \sqrt {e (c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2}{d e}-\frac {8 b (e (c+d x))^{3/2} \left (a+b \sinh ^{-1}(c+d x)\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-(c+d x)^2\right )}{3 d e^2}+\frac {16 b^2 (e (c+d x))^{5/2} \, _3F_2\left (1,\frac {5}{4},\frac {5}{4};\frac {7}{4},\frac {9}{4};-(c+d x)^2\right )}{15 d e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 110, normalized size = 0.83 \[ \frac {2 \sqrt {e (c+d x)} \left (8 b^2 (c+d x)^2 \, _3F_2\left (1,\frac {5}{4},\frac {5}{4};\frac {7}{4},\frac {9}{4};-(c+d x)^2\right )-20 b (c+d x) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-(c+d x)^2\right ) \left (a+b \sinh ^{-1}(c+d x)\right )+15 \left (a+b \sinh ^{-1}(c+d x)\right )^2\right )}{15 d e} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c + d*x])^2/Sqrt[c*e + d*e*x],x]

[Out]

(2*Sqrt[e*(c + d*x)]*(15*(a + b*ArcSinh[c + d*x])^2 - 20*b*(c + d*x)*(a + b*ArcSinh[c + d*x])*Hypergeometric2F
1[1/2, 3/4, 7/4, -(c + d*x)^2] + 8*b^2*(c + d*x)^2*HypergeometricPFQ[{1, 5/4, 5/4}, {7/4, 9/4}, -(c + d*x)^2])
)/(15*d*e)

________________________________________________________________________________________

fricas [F]  time = 1.12, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{2} \operatorname {arsinh}\left (d x + c\right )^{2} + 2 \, a b \operatorname {arsinh}\left (d x + c\right ) + a^{2}}{\sqrt {d e x + c e}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*arcsinh(d*x + c)^2 + 2*a*b*arcsinh(d*x + c) + a^2)/sqrt(d*e*x + c*e), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}}{\sqrt {d e x + c e}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x + c) + a)^2/sqrt(d*e*x + c*e), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \arcsinh \left (d x +c \right )\right )^{2}}{\sqrt {d e x +c e}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^(1/2),x)

[Out]

int((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {2 \, \sqrt {d x + c} b^{2} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}\right )^{2}}{d \sqrt {e}} + \frac {2 \, \sqrt {d e x + c e} a^{2}}{d e} + \int -\frac {2 \, {\left ({\left (2 \, b^{2} c^{2} \sqrt {e} - {\left (c^{2} \sqrt {e} + \sqrt {e}\right )} a b - {\left (a b d^{2} \sqrt {e} - 2 \, b^{2} d^{2} \sqrt {e}\right )} x^{2} - 2 \, {\left (a b c d \sqrt {e} - 2 \, b^{2} c d \sqrt {e}\right )} x\right )} \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1} \sqrt {d x + c} - {\left ({\left (a b d^{3} \sqrt {e} - 2 \, b^{2} d^{3} \sqrt {e}\right )} x^{3} + {\left (c^{3} \sqrt {e} + c \sqrt {e}\right )} a b - 2 \, {\left (c^{3} \sqrt {e} + c \sqrt {e}\right )} b^{2} + 3 \, {\left (a b c d^{2} \sqrt {e} - 2 \, b^{2} c d^{2} \sqrt {e}\right )} x^{2} + {\left ({\left (3 \, c^{2} d \sqrt {e} + d \sqrt {e}\right )} a b - 2 \, {\left (3 \, c^{2} d \sqrt {e} + d \sqrt {e}\right )} b^{2}\right )} x\right )} \sqrt {d x + c}\right )} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}\right )}{d^{4} e x^{4} + 4 \, c d^{3} e x^{3} + c^{4} e + c^{2} e + {\left (6 \, c^{2} d^{2} e + d^{2} e\right )} x^{2} + 2 \, {\left (2 \, c^{3} d e + c d e\right )} x + {\left (d^{3} e x^{3} + 3 \, c d^{2} e x^{2} + c^{3} e + c e + {\left (3 \, c^{2} d e + d e\right )} x\right )} \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^2/(d*e*x+c*e)^(1/2),x, algorithm="maxima")

[Out]

2*sqrt(d*x + c)*b^2*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))^2/(d*sqrt(e)) + 2*sqrt(d*e*x + c*e)*a^2/(
d*e) + integrate(-2*((2*b^2*c^2*sqrt(e) - (c^2*sqrt(e) + sqrt(e))*a*b - (a*b*d^2*sqrt(e) - 2*b^2*d^2*sqrt(e))*
x^2 - 2*(a*b*c*d*sqrt(e) - 2*b^2*c*d*sqrt(e))*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)*sqrt(d*x + c) - ((a*b*d^3*s
qrt(e) - 2*b^2*d^3*sqrt(e))*x^3 + (c^3*sqrt(e) + c*sqrt(e))*a*b - 2*(c^3*sqrt(e) + c*sqrt(e))*b^2 + 3*(a*b*c*d
^2*sqrt(e) - 2*b^2*c*d^2*sqrt(e))*x^2 + ((3*c^2*d*sqrt(e) + d*sqrt(e))*a*b - 2*(3*c^2*d*sqrt(e) + d*sqrt(e))*b
^2)*x)*sqrt(d*x + c))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(d^4*e*x^4 + 4*c*d^3*e*x^3 + c^4*e + c^
2*e + (6*c^2*d^2*e + d^2*e)*x^2 + 2*(2*c^3*d*e + c*d*e)*x + (d^3*e*x^3 + 3*c*d^2*e*x^2 + c^3*e + c*e + (3*c^2*
d*e + d*e)*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^2}{\sqrt {c\,e+d\,e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c + d*x))^2/(c*e + d*e*x)^(1/2),x)

[Out]

int((a + b*asinh(c + d*x))^2/(c*e + d*e*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asinh}{\left (c + d x \right )}\right )^{2}}{\sqrt {e \left (c + d x\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(d*x+c))**2/(d*e*x+c*e)**(1/2),x)

[Out]

Integral((a + b*asinh(c + d*x))**2/sqrt(e*(c + d*x)), x)

________________________________________________________________________________________