3.211 \(\int \frac {(c e+d e x)^3}{(a+b \sinh ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=262 \[ \frac {\sqrt {\pi } e^3 e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^3 e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 b^{3/2} d}+\frac {\sqrt {\pi } e^3 e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^3 e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 b^{3/2} d}-\frac {2 e^3 (c+d x)^3 \sqrt {(c+d x)^2+1}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}} \]

[Out]

-1/4*e^3*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d-1/4*e^3*erfi(2^
(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d/exp(2*a/b)+1/4*e^3*exp(4*a/b)*erf(2*(a+b*
arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(3/2)/d+1/4*e^3*erfi(2*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/
b^(3/2)/d/exp(4*a/b)-2*e^3*(d*x+c)^3*(1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.45, antiderivative size = 262, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {5865, 12, 5665, 3307, 2180, 2204, 2205} \[ \frac {\sqrt {\pi } e^3 e^{\frac {4 a}{b}} \text {Erf}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^3 e^{\frac {2 a}{b}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 b^{3/2} d}+\frac {\sqrt {\pi } e^3 e^{-\frac {4 a}{b}} \text {Erfi}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^3 e^{-\frac {2 a}{b}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 b^{3/2} d}-\frac {2 e^3 (c+d x)^3 \sqrt {(c+d x)^2+1}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^3/(a + b*ArcSinh[c + d*x])^(3/2),x]

[Out]

(-2*e^3*(c + d*x)^3*Sqrt[1 + (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSinh[c + d*x]]) + (e^3*E^((4*a)/b)*Sqrt[Pi]*Erf[
(2*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d) - (e^3*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b
*ArcSinh[c + d*x]])/Sqrt[b]])/(2*b^(3/2)*d) + (e^3*Sqrt[Pi]*Erfi[(2*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4
*b^(3/2)*d*E^((4*a)/b)) - (e^3*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(2*b^(3/2)*d*E
^((2*a)/b))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^3}{\left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e^3 x^3}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^3 \operatorname {Subst}\left (\int \frac {x^3}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {\left (2 e^3\right ) \operatorname {Subst}\left (\int \left (-\frac {\cosh (2 x)}{2 \sqrt {a+b x}}+\frac {\cosh (4 x)}{2 \sqrt {a+b x}}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {e^3 \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{b d}+\frac {e^3 \operatorname {Subst}\left (\int \frac {\cosh (4 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {e^3 \operatorname {Subst}\left (\int \frac {e^{-4 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}-\frac {e^3 \operatorname {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}-\frac {e^3 \operatorname {Subst}\left (\int \frac {e^{2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}+\frac {e^3 \operatorname {Subst}\left (\int \frac {e^{4 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {e^3 \operatorname {Subst}\left (\int e^{\frac {4 a}{b}-\frac {4 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b^2 d}-\frac {e^3 \operatorname {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b^2 d}-\frac {e^3 \operatorname {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b^2 d}+\frac {e^3 \operatorname {Subst}\left (\int e^{-\frac {4 a}{b}+\frac {4 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {e^3 e^{\frac {4 a}{b}} \sqrt {\pi } \text {erf}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^3 e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 b^{3/2} d}+\frac {e^3 e^{-\frac {4 a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {2 \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} d}-\frac {e^3 e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 b^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.45, size = 253, normalized size = 0.97 \[ \frac {e^3 e^{-\frac {4 a}{b}} \left (\sqrt {-\frac {a+b \sinh ^{-1}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {4 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-\sqrt {2} e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-e^{\frac {4 a}{b}} \left (-\sqrt {2} e^{\frac {2 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c+d x)} \Gamma \left (\frac {1}{2},\frac {2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )+e^{\frac {4 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c+d x)} \Gamma \left (\frac {1}{2},\frac {4 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-2 \sinh \left (2 \sinh ^{-1}(c+d x)\right )+\sinh \left (4 \sinh ^{-1}(c+d x)\right )\right )\right )}{4 b d \sqrt {a+b \sinh ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^3/(a + b*ArcSinh[c + d*x])^(3/2),x]

[Out]

(e^3*(Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-4*(a + b*ArcSinh[c + d*x]))/b] - Sqrt[2]*E^((2*a)/b)*Sq
rt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-2*(a + b*ArcSinh[c + d*x]))/b] - E^((4*a)/b)*(-(Sqrt[2]*E^((2*a
)/b)*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, (2*(a + b*ArcSinh[c + d*x]))/b]) + E^((4*a)/b)*Sqrt[a/b + ArcSinh
[c + d*x]]*Gamma[1/2, (4*(a + b*ArcSinh[c + d*x]))/b] - 2*Sinh[2*ArcSinh[c + d*x]] + Sinh[4*ArcSinh[c + d*x]])
))/(4*b*d*E^((4*a)/b)*Sqrt[a + b*ArcSinh[c + d*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsinh(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d e x +c e \right )^{3}}{\left (a +b \arcsinh \left (d x +c \right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(3/2),x)

[Out]

int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsinh(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,e+d\,e\,x\right )}^3}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^(3/2),x)

[Out]

int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{3} \left (\int \frac {c^{3}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {d^{3} x^{3}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {3 c d^{2} x^{2}}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx + \int \frac {3 c^{2} d x}{a \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}} \operatorname {asinh}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**3/(a+b*asinh(d*x+c))**(3/2),x)

[Out]

e**3*(Integral(c**3/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integra
l(d**3*x**3/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integral(3*c*d*
*2*x**2/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integral(3*c**2*d*x
/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x))

________________________________________________________________________________________