3.163 \(\int \frac {(c e+d e x)^3}{(a+b \sinh ^{-1}(c+d x))^2} \, dx\)

Optimal. Leaf size=188 \[ -\frac {e^3 \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )}{2 b^2 d}+\frac {e^3 \cosh \left (\frac {4 a}{b}\right ) \text {Chi}\left (\frac {4 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )}{2 b^2 d}+\frac {e^3 \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )}{2 b^2 d}-\frac {e^3 \sinh \left (\frac {4 a}{b}\right ) \text {Shi}\left (\frac {4 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )}{2 b^2 d}-\frac {e^3 (c+d x)^3 \sqrt {(c+d x)^2+1}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )} \]

[Out]

-1/2*e^3*Chi(2*(a+b*arcsinh(d*x+c))/b)*cosh(2*a/b)/b^2/d+1/2*e^3*Chi(4*(a+b*arcsinh(d*x+c))/b)*cosh(4*a/b)/b^2
/d+1/2*e^3*Shi(2*(a+b*arcsinh(d*x+c))/b)*sinh(2*a/b)/b^2/d-1/2*e^3*Shi(4*(a+b*arcsinh(d*x+c))/b)*sinh(4*a/b)/b
^2/d-e^3*(d*x+c)^3*(1+(d*x+c)^2)^(1/2)/b/d/(a+b*arcsinh(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {5865, 12, 5665, 3303, 3298, 3301} \[ -\frac {e^3 \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}+\frac {e^3 \cosh \left (\frac {4 a}{b}\right ) \text {Chi}\left (\frac {4 a}{b}+4 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}+\frac {e^3 \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}-\frac {e^3 \sinh \left (\frac {4 a}{b}\right ) \text {Shi}\left (\frac {4 a}{b}+4 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}-\frac {e^3 (c+d x)^3 \sqrt {(c+d x)^2+1}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^3/(a + b*ArcSinh[c + d*x])^2,x]

[Out]

-((e^3*(c + d*x)^3*Sqrt[1 + (c + d*x)^2])/(b*d*(a + b*ArcSinh[c + d*x]))) - (e^3*Cosh[(2*a)/b]*CoshIntegral[(2
*a)/b + 2*ArcSinh[c + d*x]])/(2*b^2*d) + (e^3*Cosh[(4*a)/b]*CoshIntegral[(4*a)/b + 4*ArcSinh[c + d*x]])/(2*b^2
*d) + (e^3*Sinh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSinh[c + d*x]])/(2*b^2*d) - (e^3*Sinh[(4*a)/b]*SinhIntegr
al[(4*a)/b + 4*ArcSinh[c + d*x]])/(2*b^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^3}{\left (a+b \sinh ^{-1}(c+d x)\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e^3 x^3}{\left (a+b \sinh ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^3 \operatorname {Subst}\left (\int \frac {x^3}{\left (a+b \sinh ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{d}\\ &=-\frac {e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}+\frac {e^3 \operatorname {Subst}\left (\int \left (-\frac {\cosh (2 x)}{2 (a+b x)}+\frac {\cosh (4 x)}{2 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}-\frac {e^3 \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}+\frac {e^3 \operatorname {Subst}\left (\int \frac {\cosh (4 x)}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}-\frac {\left (e^3 \cosh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (e^3 \cosh \left (\frac {4 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (e^3 \sinh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}-\frac {\left (e^3 \sinh \left (\frac {4 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {e^3 (c+d x)^3 \sqrt {1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}-\frac {e^3 \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}+\frac {e^3 \cosh \left (\frac {4 a}{b}\right ) \text {Chi}\left (\frac {4 a}{b}+4 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}+\frac {e^3 \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}-\frac {e^3 \sinh \left (\frac {4 a}{b}\right ) \text {Shi}\left (\frac {4 a}{b}+4 \sinh ^{-1}(c+d x)\right )}{2 b^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.88, size = 193, normalized size = 1.03 \[ -\frac {e^3 \left (\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\sinh ^{-1}(c+d x)\right )\right )-\cosh \left (\frac {4 a}{b}\right ) \text {Chi}\left (4 \left (\frac {a}{b}+\sinh ^{-1}(c+d x)\right )\right )-4 \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\sinh ^{-1}(c+d x)\right )\right )+\sinh \left (\frac {4 a}{b}\right ) \text {Shi}\left (4 \left (\frac {a}{b}+\sinh ^{-1}(c+d x)\right )\right )+3 \left (\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\sinh ^{-1}(c+d x)\right )\right )+\log \left (a+b \sinh ^{-1}(c+d x)\right )\right )+\frac {2 b \sqrt {(c+d x)^2+1} (c+d x)^3}{a+b \sinh ^{-1}(c+d x)}-3 \log \left (a+b \sinh ^{-1}(c+d x)\right )\right )}{2 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^3/(a + b*ArcSinh[c + d*x])^2,x]

[Out]

-1/2*(e^3*((2*b*(c + d*x)^3*Sqrt[1 + (c + d*x)^2])/(a + b*ArcSinh[c + d*x]) + Cosh[(2*a)/b]*CoshIntegral[2*(a/
b + ArcSinh[c + d*x])] - Cosh[(4*a)/b]*CoshIntegral[4*(a/b + ArcSinh[c + d*x])] - 3*Log[a + b*ArcSinh[c + d*x]
] - 4*Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSinh[c + d*x])] + 3*(Log[a + b*ArcSinh[c + d*x]] + Sinh[(2*a)/b]*
SinhIntegral[2*(a/b + ArcSinh[c + d*x])]) + Sinh[(4*a)/b]*SinhIntegral[4*(a/b + ArcSinh[c + d*x])]))/(b^2*d)

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {d^{3} e^{3} x^{3} + 3 \, c d^{2} e^{3} x^{2} + 3 \, c^{2} d e^{3} x + c^{3} e^{3}}{b^{2} \operatorname {arsinh}\left (d x + c\right )^{2} + 2 \, a b \operatorname {arsinh}\left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((d^3*e^3*x^3 + 3*c*d^2*e^3*x^2 + 3*c^2*d*e^3*x + c^3*e^3)/(b^2*arcsinh(d*x + c)^2 + 2*a*b*arcsinh(d*x
 + c) + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsinh(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 0.30, size = 388, normalized size = 2.06 \[ \frac {\frac {\left (8 \left (d x +c \right )^{4}-8 \left (d x +c \right )^{3} \sqrt {1+\left (d x +c \right )^{2}}+8 \left (d x +c \right )^{2}-4 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+1\right ) e^{3}}{16 \left (a +b \arcsinh \left (d x +c \right )\right ) b}-\frac {e^{3} {\mathrm e}^{\frac {4 a}{b}} \Ei \left (1, 4 \arcsinh \left (d x +c \right )+\frac {4 a}{b}\right )}{4 b^{2}}-\frac {\left (2 \left (d x +c \right )^{2}-2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+1\right ) e^{3}}{8 \left (a +b \arcsinh \left (d x +c \right )\right ) b}+\frac {e^{3} {\mathrm e}^{\frac {2 a}{b}} \Ei \left (1, 2 \arcsinh \left (d x +c \right )+\frac {2 a}{b}\right )}{4 b^{2}}+\frac {e^{3} \left (2 \left (d x +c \right )^{2}+1+2 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}\right )}{8 b \left (a +b \arcsinh \left (d x +c \right )\right )}+\frac {e^{3} {\mathrm e}^{-\frac {2 a}{b}} \Ei \left (1, -2 \arcsinh \left (d x +c \right )-\frac {2 a}{b}\right )}{4 b^{2}}-\frac {e^{3} \left (8 \left (d x +c \right )^{4}+8 \left (d x +c \right )^{2}+8 \left (d x +c \right )^{3} \sqrt {1+\left (d x +c \right )^{2}}+4 \left (d x +c \right ) \sqrt {1+\left (d x +c \right )^{2}}+1\right )}{16 b \left (a +b \arcsinh \left (d x +c \right )\right )}-\frac {e^{3} {\mathrm e}^{-\frac {4 a}{b}} \Ei \left (1, -4 \arcsinh \left (d x +c \right )-\frac {4 a}{b}\right )}{4 b^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^2,x)

[Out]

1/d*(1/16*(8*(d*x+c)^4-8*(d*x+c)^3*(1+(d*x+c)^2)^(1/2)+8*(d*x+c)^2-4*(d*x+c)*(1+(d*x+c)^2)^(1/2)+1)*e^3/(a+b*a
rcsinh(d*x+c))/b-1/4*e^3/b^2*exp(4*a/b)*Ei(1,4*arcsinh(d*x+c)+4*a/b)-1/8*(2*(d*x+c)^2-2*(d*x+c)*(1+(d*x+c)^2)^
(1/2)+1)*e^3/(a+b*arcsinh(d*x+c))/b+1/4*e^3/b^2*exp(2*a/b)*Ei(1,2*arcsinh(d*x+c)+2*a/b)+1/8/b*e^3*(2*(d*x+c)^2
+1+2*(d*x+c)*(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))+1/4/b^2*e^3*exp(-2*a/b)*Ei(1,-2*arcsinh(d*x+c)-2*a/b)-1
/16/b*e^3*(8*(d*x+c)^4+8*(d*x+c)^2+8*(d*x+c)^3*(1+(d*x+c)^2)^(1/2)+4*(d*x+c)*(1+(d*x+c)^2)^(1/2)+1)/(a+b*arcsi
nh(d*x+c))-1/4/b^2*e^3*exp(-4*a/b)*Ei(1,-4*arcsinh(d*x+c)-4*a/b))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^2,x, algorithm="maxima")

[Out]

-(d^6*e^3*x^6 + 6*c*d^5*e^3*x^5 + c^6*e^3 + c^4*e^3 + (15*c^2*d^4*e^3 + d^4*e^3)*x^4 + 4*(5*c^3*d^3*e^3 + c*d^
3*e^3)*x^3 + 3*(5*c^4*d^2*e^3 + 2*c^2*d^2*e^3)*x^2 + 2*(3*c^5*d*e^3 + 2*c^3*d*e^3)*x + (d^5*e^3*x^5 + 5*c*d^4*
e^3*x^4 + c^5*e^3 + c^3*e^3 + (10*c^2*d^3*e^3 + d^3*e^3)*x^3 + (10*c^3*d^2*e^3 + 3*c*d^2*e^3)*x^2 + (5*c^4*d*e
^3 + 3*c^2*d*e^3)*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^3*x^2 + 2*a*b*c*d^2*x + (c^2*d + d)*a*b + (b^2*
d^3*x^2 + 2*b^2*c*d^2*x + (c^2*d + d)*b^2 + (b^2*d^2*x + b^2*c*d)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))*log(d*x +
 c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + (a*b*d^2*x + a*b*c*d)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + integrate
((4*d^7*e^3*x^7 + 28*c*d^6*e^3*x^6 + 4*c^7*e^3 + 8*c^5*e^3 + 4*c^3*e^3 + 4*(21*c^2*d^5*e^3 + 2*d^5*e^3)*x^5 +
20*(7*c^3*d^4*e^3 + 2*c*d^4*e^3)*x^4 + 4*(35*c^4*d^3*e^3 + 20*c^2*d^3*e^3 + d^3*e^3)*x^3 + 4*(21*c^5*d^2*e^3 +
 20*c^3*d^2*e^3 + 3*c*d^2*e^3)*x^2 + 2*(2*d^5*e^3*x^5 + 10*c*d^4*e^3*x^4 + 2*c^5*e^3 + c^3*e^3 + (20*c^2*d^3*e
^3 + d^3*e^3)*x^3 + (20*c^3*d^2*e^3 + 3*c*d^2*e^3)*x^2 + (10*c^4*d*e^3 + 3*c^2*d*e^3)*x)*(d^2*x^2 + 2*c*d*x +
c^2 + 1) + 4*(7*c^6*d*e^3 + 10*c^4*d*e^3 + 3*c^2*d*e^3)*x + (8*d^6*e^3*x^6 + 48*c*d^5*e^3*x^5 + 8*c^6*e^3 + 10
*c^4*e^3 + 3*c^2*e^3 + 10*(12*c^2*d^4*e^3 + d^4*e^3)*x^4 + 40*(4*c^3*d^3*e^3 + c*d^3*e^3)*x^3 + 3*(40*c^4*d^2*
e^3 + 20*c^2*d^2*e^3 + d^2*e^3)*x^2 + 2*(24*c^5*d*e^3 + 20*c^3*d*e^3 + 3*c*d*e^3)*x)*sqrt(d^2*x^2 + 2*c*d*x +
c^2 + 1))/(a*b*d^4*x^4 + 4*a*b*c*d^3*x^3 + 2*(3*c^2*d^2 + d^2)*a*b*x^2 + 4*(c^3*d + c*d)*a*b*x + (c^4 + 2*c^2
+ 1)*a*b + (a*b*d^2*x^2 + 2*a*b*c*d*x + a*b*c^2)*(d^2*x^2 + 2*c*d*x + c^2 + 1) + (b^2*d^4*x^4 + 4*b^2*c*d^3*x^
3 + 2*(3*c^2*d^2 + d^2)*b^2*x^2 + 4*(c^3*d + c*d)*b^2*x + (c^4 + 2*c^2 + 1)*b^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x +
 b^2*c^2)*(d^2*x^2 + 2*c*d*x + c^2 + 1) + 2*(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + (3*c^2*d + d)*b^2*x + (c^3 + c)*b
^2)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + 2*(a*b*d^3*x^3 + 3*a
*b*c*d^2*x^2 + (3*c^2*d + d)*a*b*x + (c^3 + c)*a*b)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,e+d\,e\,x\right )}^3}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^2,x)

[Out]

int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{3} \left (\int \frac {c^{3}}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {d^{3} x^{3}}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {3 c d^{2} x^{2}}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac {3 c^{2} d x}{a^{2} + 2 a b \operatorname {asinh}{\left (c + d x \right )} + b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**3/(a+b*asinh(d*x+c))**2,x)

[Out]

e**3*(Integral(c**3/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x) + Integral(d**3*x**3/(a**2 + 2*
a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x) + Integral(3*c*d**2*x**2/(a**2 + 2*a*b*asinh(c + d*x) + b**2*
asinh(c + d*x)**2), x) + Integral(3*c**2*d*x/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x))

________________________________________________________________________________________