3.142 \(\int \frac {(a+b \sinh ^{-1}(c+d x))^3}{c e+d e x} \, dx\)

Optimal. Leaf size=155 \[ -\frac {3 b^2 \text {Li}_3\left (e^{-2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )}{2 d e}-\frac {3 b \text {Li}_2\left (e^{-2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )^2}{2 d e}+\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\log \left (1-e^{-2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )^3}{d e}-\frac {3 b^3 \text {Li}_4\left (e^{-2 \sinh ^{-1}(c+d x)}\right )}{4 d e} \]

[Out]

1/4*(a+b*arcsinh(d*x+c))^4/b/d/e+(a+b*arcsinh(d*x+c))^3*ln(1-1/(d*x+c+(1+(d*x+c)^2)^(1/2))^2)/d/e-3/2*b*(a+b*a
rcsinh(d*x+c))^2*polylog(2,1/(d*x+c+(1+(d*x+c)^2)^(1/2))^2)/d/e-3/2*b^2*(a+b*arcsinh(d*x+c))*polylog(3,1/(d*x+
c+(1+(d*x+c)^2)^(1/2))^2)/d/e-3/4*b^3*polylog(4,1/(d*x+c+(1+(d*x+c)^2)^(1/2))^2)/d/e

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {5865, 12, 5659, 3716, 2190, 2531, 6609, 2282, 6589} \[ -\frac {3 b^2 \text {PolyLog}\left (3,e^{2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )}{2 d e}+\frac {3 b \text {PolyLog}\left (2,e^{2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )^2}{2 d e}+\frac {3 b^3 \text {PolyLog}\left (4,e^{2 \sinh ^{-1}(c+d x)}\right )}{4 d e}-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )^3}{d e} \]

Warning: Unable to verify antiderivative.

[In]

Int[(a + b*ArcSinh[c + d*x])^3/(c*e + d*e*x),x]

[Out]

-(a + b*ArcSinh[c + d*x])^4/(4*b*d*e) + ((a + b*ArcSinh[c + d*x])^3*Log[1 - E^(2*ArcSinh[c + d*x])])/(d*e) + (
3*b*(a + b*ArcSinh[c + d*x])^2*PolyLog[2, E^(2*ArcSinh[c + d*x])])/(2*d*e) - (3*b^2*(a + b*ArcSinh[c + d*x])*P
olyLog[3, E^(2*ArcSinh[c + d*x])])/(2*d*e) + (3*b^3*PolyLog[4, E^(2*ArcSinh[c + d*x])])/(4*d*e)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 3716

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> -Simp[(I*(c
+ d*x)^(m + 1))/(d*(m + 1)), x] + Dist[2*I, Int[((c + d*x)^m*E^(2*(-(I*e) + f*fz*x)))/(E^(2*I*k*Pi)*(1 + E^(2*
(-(I*e) + f*fz*x))/E^(2*I*k*Pi))), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 5659

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tanh[x], x], x, ArcSinh
[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6609

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[((e + f*x)^m*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p])/(b*c*p*Log[F]), x] - Dist[(f*m)/(b*c*p*Log[F]), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c+d x)\right )^3}{c e+d e x} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b \sinh ^{-1}(x)\right )^3}{e x} \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b \sinh ^{-1}(x)\right )^3}{x} \, dx,x,c+d x\right )}{d e}\\ &=\frac {\operatorname {Subst}\left (\int (a+b x)^3 \coth (x) \, dx,x,\sinh ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}-\frac {2 \operatorname {Subst}\left (\int \frac {e^{2 x} (a+b x)^3}{1-e^{2 x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^3 \log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right )}{d e}-\frac {(3 b) \operatorname {Subst}\left (\int (a+b x)^2 \log \left (1-e^{2 x}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^3 \log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right )}{d e}+\frac {3 b \left (a+b \sinh ^{-1}(c+d x)\right )^2 \text {Li}_2\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}-\frac {\left (3 b^2\right ) \operatorname {Subst}\left (\int (a+b x) \text {Li}_2\left (e^{2 x}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{d e}\\ &=-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^3 \log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right )}{d e}+\frac {3 b \left (a+b \sinh ^{-1}(c+d x)\right )^2 \text {Li}_2\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}-\frac {3 b^2 \left (a+b \sinh ^{-1}(c+d x)\right ) \text {Li}_3\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}+\frac {\left (3 b^3\right ) \operatorname {Subst}\left (\int \text {Li}_3\left (e^{2 x}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 d e}\\ &=-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^3 \log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right )}{d e}+\frac {3 b \left (a+b \sinh ^{-1}(c+d x)\right )^2 \text {Li}_2\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}-\frac {3 b^2 \left (a+b \sinh ^{-1}(c+d x)\right ) \text {Li}_3\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}+\frac {\left (3 b^3\right ) \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^{2 \sinh ^{-1}(c+d x)}\right )}{4 d e}\\ &=-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{4 b d e}+\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^3 \log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right )}{d e}+\frac {3 b \left (a+b \sinh ^{-1}(c+d x)\right )^2 \text {Li}_2\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}-\frac {3 b^2 \left (a+b \sinh ^{-1}(c+d x)\right ) \text {Li}_3\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{2 d e}+\frac {3 b^3 \text {Li}_4\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{4 d e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 128, normalized size = 0.83 \[ \frac {-6 b^2 \text {Li}_3\left (e^{2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )+6 b \text {Li}_2\left (e^{2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )^2-\frac {\left (a+b \sinh ^{-1}(c+d x)\right )^4}{b}+4 \log \left (1-e^{2 \sinh ^{-1}(c+d x)}\right ) \left (a+b \sinh ^{-1}(c+d x)\right )^3+3 b^3 \text {Li}_4\left (e^{2 \sinh ^{-1}(c+d x)}\right )}{4 d e} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c + d*x])^3/(c*e + d*e*x),x]

[Out]

(-((a + b*ArcSinh[c + d*x])^4/b) + 4*(a + b*ArcSinh[c + d*x])^3*Log[1 - E^(2*ArcSinh[c + d*x])] + 6*b*(a + b*A
rcSinh[c + d*x])^2*PolyLog[2, E^(2*ArcSinh[c + d*x])] - 6*b^2*(a + b*ArcSinh[c + d*x])*PolyLog[3, E^(2*ArcSinh
[c + d*x])] + 3*b^3*PolyLog[4, E^(2*ArcSinh[c + d*x])])/(4*d*e)

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{3} \operatorname {arsinh}\left (d x + c\right )^{3} + 3 \, a b^{2} \operatorname {arsinh}\left (d x + c\right )^{2} + 3 \, a^{2} b \operatorname {arsinh}\left (d x + c\right ) + a^{3}}{d e x + c e}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^3/(d*e*x+c*e),x, algorithm="fricas")

[Out]

integral((b^3*arcsinh(d*x + c)^3 + 3*a*b^2*arcsinh(d*x + c)^2 + 3*a^2*b*arcsinh(d*x + c) + a^3)/(d*e*x + c*e),
 x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{3}}{d e x + c e}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^3/(d*e*x+c*e),x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x + c) + a)^3/(d*e*x + c*e), x)

________________________________________________________________________________________

maple [B]  time = 0.09, size = 736, normalized size = 4.75 \[ \frac {a^{3} \ln \left (d x +c \right )}{d e}-\frac {b^{3} \arcsinh \left (d x +c \right )^{4}}{4 d e}+\frac {b^{3} \arcsinh \left (d x +c \right )^{3} \ln \left (1+d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {3 b^{3} \arcsinh \left (d x +c \right )^{2} \polylog \left (2, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}-\frac {6 b^{3} \arcsinh \left (d x +c \right ) \polylog \left (3, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {6 b^{3} \polylog \left (4, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {b^{3} \arcsinh \left (d x +c \right )^{3} \ln \left (1-d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {3 b^{3} \arcsinh \left (d x +c \right )^{2} \polylog \left (2, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}-\frac {6 b^{3} \arcsinh \left (d x +c \right ) \polylog \left (3, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {6 b^{3} \polylog \left (4, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}-\frac {a \,b^{2} \arcsinh \left (d x +c \right )^{3}}{d e}+\frac {3 a \,b^{2} \arcsinh \left (d x +c \right )^{2} \ln \left (1+d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {6 a \,b^{2} \arcsinh \left (d x +c \right ) \polylog \left (2, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}-\frac {6 a \,b^{2} \polylog \left (3, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {3 a \,b^{2} \arcsinh \left (d x +c \right )^{2} \ln \left (1-d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {6 a \,b^{2} \arcsinh \left (d x +c \right ) \polylog \left (2, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}-\frac {6 a \,b^{2} \polylog \left (3, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}-\frac {3 a^{2} b \arcsinh \left (d x +c \right )^{2}}{2 d e}+\frac {3 a^{2} b \arcsinh \left (d x +c \right ) \ln \left (1+d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {3 a^{2} b \polylog \left (2, -d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {3 a^{2} b \arcsinh \left (d x +c \right ) \ln \left (1-d x -c -\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e}+\frac {3 a^{2} b \polylog \left (2, d x +c +\sqrt {1+\left (d x +c \right )^{2}}\right )}{d e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(d*x+c))^3/(d*e*x+c*e),x)

[Out]

1/d*a^3/e*ln(d*x+c)-1/4/d*b^3/e*arcsinh(d*x+c)^4+1/d*b^3/e*arcsinh(d*x+c)^3*ln(1+d*x+c+(1+(d*x+c)^2)^(1/2))+3/
d*b^3/e*arcsinh(d*x+c)^2*polylog(2,-d*x-c-(1+(d*x+c)^2)^(1/2))-6/d*b^3/e*arcsinh(d*x+c)*polylog(3,-d*x-c-(1+(d
*x+c)^2)^(1/2))+6/d*b^3/e*polylog(4,-d*x-c-(1+(d*x+c)^2)^(1/2))+1/d*b^3/e*arcsinh(d*x+c)^3*ln(1-d*x-c-(1+(d*x+
c)^2)^(1/2))+3/d*b^3/e*arcsinh(d*x+c)^2*polylog(2,d*x+c+(1+(d*x+c)^2)^(1/2))-6/d*b^3/e*arcsinh(d*x+c)*polylog(
3,d*x+c+(1+(d*x+c)^2)^(1/2))+6/d*b^3/e*polylog(4,d*x+c+(1+(d*x+c)^2)^(1/2))-1/d*a*b^2/e*arcsinh(d*x+c)^3+3/d*a
*b^2/e*arcsinh(d*x+c)^2*ln(1+d*x+c+(1+(d*x+c)^2)^(1/2))+6/d*a*b^2/e*arcsinh(d*x+c)*polylog(2,-d*x-c-(1+(d*x+c)
^2)^(1/2))-6/d*a*b^2/e*polylog(3,-d*x-c-(1+(d*x+c)^2)^(1/2))+3/d*a*b^2/e*arcsinh(d*x+c)^2*ln(1-d*x-c-(1+(d*x+c
)^2)^(1/2))+6/d*a*b^2/e*arcsinh(d*x+c)*polylog(2,d*x+c+(1+(d*x+c)^2)^(1/2))-6/d*a*b^2/e*polylog(3,d*x+c+(1+(d*
x+c)^2)^(1/2))-3/2/d*a^2*b/e*arcsinh(d*x+c)^2+3/d*a^2*b/e*arcsinh(d*x+c)*ln(1+d*x+c+(1+(d*x+c)^2)^(1/2))+3/d*a
^2*b/e*polylog(2,-d*x-c-(1+(d*x+c)^2)^(1/2))+3/d*a^2*b/e*arcsinh(d*x+c)*ln(1-d*x-c-(1+(d*x+c)^2)^(1/2))+3/d*a^
2*b/e*polylog(2,d*x+c+(1+(d*x+c)^2)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a^{3} \log \left (d e x + c e\right )}{d e} + \int \frac {b^{3} \log \left (d x + c + \sqrt {{\left (d x + c\right )}^{2} + 1}\right )^{3}}{d e x + c e} + \frac {3 \, a b^{2} \log \left (d x + c + \sqrt {{\left (d x + c\right )}^{2} + 1}\right )^{2}}{d e x + c e} + \frac {3 \, a^{2} b \log \left (d x + c + \sqrt {{\left (d x + c\right )}^{2} + 1}\right )}{d e x + c e}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^3/(d*e*x+c*e),x, algorithm="maxima")

[Out]

a^3*log(d*e*x + c*e)/(d*e) + integrate(b^3*log(d*x + c + sqrt((d*x + c)^2 + 1))^3/(d*e*x + c*e) + 3*a*b^2*log(
d*x + c + sqrt((d*x + c)^2 + 1))^2/(d*e*x + c*e) + 3*a^2*b*log(d*x + c + sqrt((d*x + c)^2 + 1))/(d*e*x + c*e),
 x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^3}{c\,e+d\,e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c + d*x))^3/(c*e + d*e*x),x)

[Out]

int((a + b*asinh(c + d*x))^3/(c*e + d*e*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {a^{3}}{c + d x}\, dx + \int \frac {b^{3} \operatorname {asinh}^{3}{\left (c + d x \right )}}{c + d x}\, dx + \int \frac {3 a b^{2} \operatorname {asinh}^{2}{\left (c + d x \right )}}{c + d x}\, dx + \int \frac {3 a^{2} b \operatorname {asinh}{\left (c + d x \right )}}{c + d x}\, dx}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(d*x+c))**3/(d*e*x+c*e),x)

[Out]

(Integral(a**3/(c + d*x), x) + Integral(b**3*asinh(c + d*x)**3/(c + d*x), x) + Integral(3*a*b**2*asinh(c + d*x
)**2/(c + d*x), x) + Integral(3*a**2*b*asinh(c + d*x)/(c + d*x), x))/e

________________________________________________________________________________________