3.119 \(\int (a+b \sinh ^{-1}(c+d x)) \, dx\)

Optimal. Leaf size=39 \[ a x-\frac {b \sqrt {(c+d x)^2+1}}{d}+\frac {b (c+d x) \sinh ^{-1}(c+d x)}{d} \]

[Out]

a*x+b*(d*x+c)*arcsinh(d*x+c)/d-b*(1+(d*x+c)^2)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {5863, 5653, 261} \[ a x-\frac {b \sqrt {(c+d x)^2+1}}{d}+\frac {b (c+d x) \sinh ^{-1}(c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[a + b*ArcSinh[c + d*x],x]

[Out]

a*x - (b*Sqrt[1 + (c + d*x)^2])/d + (b*(c + d*x)*ArcSinh[c + d*x])/d

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5863

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int \left (a+b \sinh ^{-1}(c+d x)\right ) \, dx &=a x+b \int \sinh ^{-1}(c+d x) \, dx\\ &=a x+\frac {b \operatorname {Subst}\left (\int \sinh ^{-1}(x) \, dx,x,c+d x\right )}{d}\\ &=a x+\frac {b (c+d x) \sinh ^{-1}(c+d x)}{d}-\frac {b \operatorname {Subst}\left (\int \frac {x}{\sqrt {1+x^2}} \, dx,x,c+d x\right )}{d}\\ &=a x-\frac {b \sqrt {1+(c+d x)^2}}{d}+\frac {b (c+d x) \sinh ^{-1}(c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 50, normalized size = 1.28 \[ a x-\frac {b \left (\sqrt {c^2+2 c d x+d^2 x^2+1}-c \sinh ^{-1}(c+d x)\right )}{d}+b x \sinh ^{-1}(c+d x) \]

Antiderivative was successfully verified.

[In]

Integrate[a + b*ArcSinh[c + d*x],x]

[Out]

a*x + b*x*ArcSinh[c + d*x] - (b*(Sqrt[1 + c^2 + 2*c*d*x + d^2*x^2] - c*ArcSinh[c + d*x]))/d

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 65, normalized size = 1.67 \[ \frac {a d x + {\left (b d x + b c\right )} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}\right ) - \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1} b}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*arcsinh(d*x+c),x, algorithm="fricas")

[Out]

(a*d*x + (b*d*x + b*c)*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) - sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)*b)
/d

________________________________________________________________________________________

giac [B]  time = 0.36, size = 99, normalized size = 2.54 \[ -{\left (d {\left (\frac {c \log \left (-c d - {\left (x {\left | d \right |} - \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}\right )} {\left | d \right |}\right )}{d {\left | d \right |}} + \frac {\sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} + 1}}{d^{2}}\right )} - x \log \left (d x + c + \sqrt {{\left (d x + c\right )}^{2} + 1}\right )\right )} b + a x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*arcsinh(d*x+c),x, algorithm="giac")

[Out]

-(d*(c*log(-c*d - (x*abs(d) - sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))*abs(d))/(d*abs(d)) + sqrt(d^2*x^2 + 2*c*d*x +
 c^2 + 1)/d^2) - x*log(d*x + c + sqrt((d*x + c)^2 + 1)))*b + a*x

________________________________________________________________________________________

maple [A]  time = 0.00, size = 36, normalized size = 0.92 \[ a x +\frac {b \left (\left (d x +c \right ) \arcsinh \left (d x +c \right )-\sqrt {1+\left (d x +c \right )^{2}}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(a+b*arcsinh(d*x+c),x)

[Out]

a*x+b/d*((d*x+c)*arcsinh(d*x+c)-(1+(d*x+c)^2)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 35, normalized size = 0.90 \[ a x + \frac {{\left ({\left (d x + c\right )} \operatorname {arsinh}\left (d x + c\right ) - \sqrt {{\left (d x + c\right )}^{2} + 1}\right )} b}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*arcsinh(d*x+c),x, algorithm="maxima")

[Out]

a*x + ((d*x + c)*arcsinh(d*x + c) - sqrt((d*x + c)^2 + 1))*b/d

________________________________________________________________________________________

mupad [B]  time = 0.48, size = 85, normalized size = 2.18 \[ a\,x+b\,x\,\mathrm {asinh}\left (c+d\,x\right )-\frac {b\,\sqrt {c^2+2\,c\,d\,x+d^2\,x^2+1}}{d}+\frac {b\,c\,d^2\,\ln \left (\sqrt {c^2+2\,c\,d\,x+d^2\,x^2+1}+\frac {x\,d^2+c\,d}{\sqrt {d^2}}\right )}{{\left (d^2\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(a + b*asinh(c + d*x),x)

[Out]

a*x + b*x*asinh(c + d*x) - (b*(c^2 + d^2*x^2 + 2*c*d*x + 1)^(1/2))/d + (b*c*d^2*log((c^2 + d^2*x^2 + 2*c*d*x +
 1)^(1/2) + (c*d + d^2*x)/(d^2)^(1/2)))/(d^2)^(3/2)

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 51, normalized size = 1.31 \[ a x + b \left (\begin {cases} \frac {c \operatorname {asinh}{\left (c + d x \right )}}{d} + x \operatorname {asinh}{\left (c + d x \right )} - \frac {\sqrt {c^{2} + 2 c d x + d^{2} x^{2} + 1}}{d} & \text {for}\: d \neq 0 \\x \operatorname {asinh}{\relax (c )} & \text {otherwise} \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(a+b*asinh(d*x+c),x)

[Out]

a*x + b*Piecewise((c*asinh(c + d*x)/d + x*asinh(c + d*x) - sqrt(c**2 + 2*c*d*x + d**2*x**2 + 1)/d, Ne(d, 0)),
(x*asinh(c), True))

________________________________________________________________________________________