3.112 \(\int \frac {x}{(a+b \sinh ^{-1}(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=445 \[ \frac {4 \sqrt {\pi } c e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 \sqrt {2 \pi } e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {4 \sqrt {\pi } c e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 \sqrt {2 \pi } e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {32 \sqrt {(c+d x)^2+1} (c+d x)}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {8 c \sqrt {(c+d x)^2+1}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}+\frac {2 c \sqrt {(c+d x)^2+1}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

[Out]

-4/15/b^2/d^2/(a+b*arcsinh(d*x+c))^(3/2)+4/15*c*(d*x+c)/b^2/d^2/(a+b*arcsinh(d*x+c))^(3/2)-8/15*(d*x+c)^2/b^2/
d^2/(a+b*arcsinh(d*x+c))^(3/2)+4/15*c*exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d^2-4/
15*c*erfi((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/b^(7/2)/d^2/exp(a/b)+8/15*exp(2*a/b)*erf(2^(1/2)*(a+b*a
rcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(7/2)/d^2+8/15*erfi(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2
))*2^(1/2)*Pi^(1/2)/b^(7/2)/d^2/exp(2*a/b)+2/5*c*(1+(d*x+c)^2)^(1/2)/b/d^2/(a+b*arcsinh(d*x+c))^(5/2)-2/5*(d*x
+c)*(1+(d*x+c)^2)^(1/2)/b/d^2/(a+b*arcsinh(d*x+c))^(5/2)+8/15*c*(1+(d*x+c)^2)^(1/2)/b^3/d^2/(a+b*arcsinh(d*x+c
))^(1/2)-32/15*(d*x+c)*(1+(d*x+c)^2)^(1/2)/b^3/d^2/(a+b*arcsinh(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.05, antiderivative size = 445, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 13, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.812, Rules used = {5865, 5803, 5655, 5774, 5779, 3308, 2180, 2204, 2205, 5667, 5665, 3307, 5675} \[ \frac {4 \sqrt {\pi } c e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 \sqrt {2 \pi } e^{\frac {2 a}{b}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {4 \sqrt {\pi } c e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 \sqrt {2 \pi } e^{-\frac {2 a}{b}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {32 \sqrt {(c+d x)^2+1} (c+d x)}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {8 c \sqrt {(c+d x)^2+1}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {2 \sqrt {(c+d x)^2+1} (c+d x)}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}+\frac {2 c \sqrt {(c+d x)^2+1}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b*ArcSinh[c + d*x])^(7/2),x]

[Out]

(2*c*Sqrt[1 + (c + d*x)^2])/(5*b*d^2*(a + b*ArcSinh[c + d*x])^(5/2)) - (2*(c + d*x)*Sqrt[1 + (c + d*x)^2])/(5*
b*d^2*(a + b*ArcSinh[c + d*x])^(5/2)) - 4/(15*b^2*d^2*(a + b*ArcSinh[c + d*x])^(3/2)) + (4*c*(c + d*x))/(15*b^
2*d^2*(a + b*ArcSinh[c + d*x])^(3/2)) - (8*(c + d*x)^2)/(15*b^2*d^2*(a + b*ArcSinh[c + d*x])^(3/2)) + (8*c*Sqr
t[1 + (c + d*x)^2])/(15*b^3*d^2*Sqrt[a + b*ArcSinh[c + d*x]]) - (32*(c + d*x)*Sqrt[1 + (c + d*x)^2])/(15*b^3*d
^2*Sqrt[a + b*ArcSinh[c + d*x]]) + (4*c*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2
)*d^2) + (8*E^((2*a)/b)*Sqrt[2*Pi]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(15*b^(7/2)*d^2) - (4*
c*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d^2*E^(a/b)) + (8*Sqrt[2*Pi]*Erfi[(Sqrt[2]*
Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(15*b^(7/2)*d^2*E^((2*a)/b))

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5655

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1
))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSinh[c*x])^(n + 1))/Sqrt[1 + c^2*x^2], x], x] /; F
reeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 5667

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] + (-Dist[(c*(m + 1))/(b*(n + 1)), Int[(x^(m + 1)*(a + b*ArcSinh[c*x])^(n +
 1))/Sqrt[1 + c^2*x^2], x], x] - Dist[m/(b*c*(n + 1)), Int[(x^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1))/Sqrt[1 + c
^2*x^2], x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5774

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[((f*x)^m*(a + b*ArcSinh[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x
)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[n, -
1] && GtQ[d, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 5803

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1]

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {x}{\left (a+b \sinh ^{-1}(c+d x)\right )^{7/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {-\frac {c}{d}+\frac {x}{d}}{\left (a+b \sinh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \left (-\frac {c}{d \left (a+b \sinh ^{-1}(x)\right )^{7/2}}+\frac {x}{d \left (a+b \sinh ^{-1}(x)\right )^{7/2}}\right ) \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x}{\left (a+b \sinh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d^2}-\frac {c \operatorname {Subst}\left (\int \frac {1}{\left (a+b \sinh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \left (a+b \sinh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d^2}+\frac {4 \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \left (a+b \sinh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d^2}-\frac {(2 c) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1+x^2} \left (a+b \sinh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {16 \operatorname {Subst}\left (\int \frac {x}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d^2}-\frac {(4 c) \operatorname {Subst}\left (\int \frac {1}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {32 \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d^2}-\frac {(8 c) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1+x^2} \sqrt {a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{15 b^3 d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {16 \operatorname {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d^2}+\frac {16 \operatorname {Subst}\left (\int \frac {e^{2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d^2}-\frac {(8 c) \operatorname {Subst}\left (\int \frac {\sinh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {32 \operatorname {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d^2}+\frac {32 \operatorname {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d^2}+\frac {(4 c) \operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d^2}-\frac {(4 c) \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {8 e^{\frac {2 a}{b}} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{-\frac {2 a}{b}} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {(8 c) \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d^2}-\frac {(8 c) \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d^2}\\ &=\frac {2 c \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {2 (c+d x) \sqrt {1+(c+d x)^2}}{5 b d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac {4}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {4 c (c+d x)}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac {8 (c+d x)^2}{15 b^2 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac {8 c \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {32 (c+d x) \sqrt {1+(c+d x)^2}}{15 b^3 d^2 \sqrt {a+b \sinh ^{-1}(c+d x)}}+\frac {4 c e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{\frac {2 a}{b}} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {4 c e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}+\frac {8 e^{-\frac {2 a}{b}} \sqrt {2 \pi } \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.59, size = 429, normalized size = 0.96 \[ \frac {\frac {\sqrt {b} \left (-\sinh \left (2 \sinh ^{-1}(c+d x)\right ) \left (16 \left (a+b \sinh ^{-1}(c+d x)\right )^2+3 b^2\right )-4 b \cosh \left (2 \sinh ^{-1}(c+d x)\right ) \left (a+b \sinh ^{-1}(c+d x)\right )\right )}{\left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}+8 \sqrt {2 \pi } \left (\sinh \left (\frac {2 a}{b}\right )+\cosh \left (\frac {2 a}{b}\right )\right ) \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )+8 \sqrt {2 \pi } \left (\cosh \left (\frac {2 a}{b}\right )-\sinh \left (\frac {2 a}{b}\right )\right ) \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{15 b^{7/2} d^2}-\frac {c \left (-2 e^{-\sinh ^{-1}(c+d x)} \left (4 a^2+2 a b \left (4 \sinh ^{-1}(c+d x)-1\right )+b^2 \left (4 \sinh ^{-1}(c+d x)^2-2 \sinh ^{-1}(c+d x)+3\right )\right )+8 e^{a/b} \sqrt {\frac {a}{b}+\sinh ^{-1}(c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2 \Gamma \left (\frac {1}{2},\frac {a}{b}+\sinh ^{-1}(c+d x)\right )-4 e^{-\frac {a}{b}} \left (a+b \sinh ^{-1}(c+d x)\right ) \left (e^{\frac {a}{b}+\sinh ^{-1}(c+d x)} \left (2 a+2 b \sinh ^{-1}(c+d x)+b\right )+2 b \left (-\frac {a+b \sinh ^{-1}(c+d x)}{b}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {a+b \sinh ^{-1}(c+d x)}{b}\right )\right )-6 b^2 e^{\sinh ^{-1}(c+d x)}\right )}{30 b^3 d^2 \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/(a + b*ArcSinh[c + d*x])^(7/2),x]

[Out]

-1/30*(c*(-6*b^2*E^ArcSinh[c + d*x] - (2*(4*a^2 + 2*a*b*(-1 + 4*ArcSinh[c + d*x]) + b^2*(3 - 2*ArcSinh[c + d*x
] + 4*ArcSinh[c + d*x]^2)))/E^ArcSinh[c + d*x] + 8*E^(a/b)*Sqrt[a/b + ArcSinh[c + d*x]]*(a + b*ArcSinh[c + d*x
])^2*Gamma[1/2, a/b + ArcSinh[c + d*x]] - (4*(a + b*ArcSinh[c + d*x])*(E^(a/b + ArcSinh[c + d*x])*(2*a + b + 2
*b*ArcSinh[c + d*x]) + 2*b*(-((a + b*ArcSinh[c + d*x])/b))^(3/2)*Gamma[1/2, -((a + b*ArcSinh[c + d*x])/b)]))/E
^(a/b)))/(b^3*d^2*(a + b*ArcSinh[c + d*x])^(5/2)) + (8*Sqrt[2*Pi]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/
Sqrt[b]]*(Cosh[(2*a)/b] - Sinh[(2*a)/b]) + 8*Sqrt[2*Pi]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*(C
osh[(2*a)/b] + Sinh[(2*a)/b]) + (Sqrt[b]*(-4*b*(a + b*ArcSinh[c + d*x])*Cosh[2*ArcSinh[c + d*x]] - (3*b^2 + 16
*(a + b*ArcSinh[c + d*x])^2)*Sinh[2*ArcSinh[c + d*x]]))/(a + b*ArcSinh[c + d*x])^(5/2))/(15*b^(7/2)*d^2)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(x/(b*arcsinh(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

maple [F]  time = 0.48, size = 0, normalized size = 0.00 \[ \int \frac {x}{\left (a +b \arcsinh \left (d x +c \right )\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b*arcsinh(d*x+c))^(7/2),x)

[Out]

int(x/(a+b*arcsinh(d*x+c))^(7/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{{\left (b \operatorname {arsinh}\left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate(x/(b*arcsinh(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x}{{\left (a+b\,\mathrm {asinh}\left (c+d\,x\right )\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + b*asinh(c + d*x))^(7/2),x)

[Out]

int(x/(a + b*asinh(c + d*x))^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\left (a + b \operatorname {asinh}{\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*asinh(d*x+c))**(7/2),x)

[Out]

Integral(x/(a + b*asinh(c + d*x))**(7/2), x)

________________________________________________________________________________________