3.106 \(\int \frac {x}{\sqrt {a+b \sinh ^{-1}(c+d x)}} \, dx\)

Optimal. Leaf size=204 \[ -\frac {\sqrt {\pi } c e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^2}-\frac {\sqrt {\frac {\pi }{2}} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d^2}-\frac {\sqrt {\pi } c e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^2}+\frac {\sqrt {\frac {\pi }{2}} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d^2} \]

[Out]

-1/8*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d^2/b^(1/2)+1/8*erfi(2^(1/2)*
(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d^2/exp(2*a/b)/b^(1/2)-1/2*c*exp(a/b)*erf((a+b*arcsinh(d*
x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d^2/b^(1/2)-1/2*c*erfi((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d^2/exp(a/b)
/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5865, 5805, 6741, 6742, 5299, 2205, 2204, 5298} \[ -\frac {\sqrt {\pi } c e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^2}-\frac {\sqrt {\frac {\pi }{2}} e^{\frac {2 a}{b}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d^2}-\frac {\sqrt {\pi } c e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^2}+\frac {\sqrt {\frac {\pi }{2}} e^{-\frac {2 a}{b}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d^2} \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

-(c*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(2*Sqrt[b]*d^2) - (E^((2*a)/b)*Sqrt[Pi/2]*Erf[
(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*Sqrt[b]*d^2) - (c*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x
]]/Sqrt[b]])/(2*Sqrt[b]*d^2*E^(a/b)) + (Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*Sq
rt[b]*d^2*E^((2*a)/b))

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 5298

Int[Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[E^(c + d*x^n), x], x] - Dist[1/2, Int[E^(-c - d*
x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]

Rule 5299

Int[Cosh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[E^(c + d*x^n), x], x] + Dist[1/2, Int[E^(-c - d*
x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]

Rule 5805

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst
[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[m, 0]

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a+b \sinh ^{-1}(c+d x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {-\frac {c}{d}+\frac {x}{d}}{\sqrt {a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\cosh (x) \left (-\frac {c}{d}+\frac {\sinh (x)}{d}\right )}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{d}\\ &=-\frac {2 \operatorname {Subst}\left (\int \cosh \left (\frac {a-x^2}{b}\right ) \left (c+\sinh \left (\frac {a-x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {2 \operatorname {Subst}\left (\int \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \left (c+\sinh \left (\frac {a-x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {2 \operatorname {Subst}\left (\int \left (c \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right )+\frac {1}{2} \sinh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right )\right ) \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {\operatorname {Subst}\left (\int \sinh \left (\frac {2 a}{b}-\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}-\frac {(2 c) \operatorname {Subst}\left (\int \cosh \left (\frac {a}{b}-\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {\operatorname {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{2 b d^2}+\frac {\operatorname {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{2 b d^2}-\frac {c \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}-\frac {c \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{b d^2}\\ &=-\frac {c e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^2}-\frac {e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d^2}-\frac {c e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d^2}+\frac {e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.02, size = 217, normalized size = 1.06 \[ \frac {\frac {e^{-\frac {a}{b}} \left (4 c e^{\frac {2 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c+d x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\sinh ^{-1}(c+d x)\right )-4 c \sqrt {-\frac {a+b \sinh ^{-1}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \sinh ^{-1}(c+d x)}{b}\right )\right )}{\sqrt {a+b \sinh ^{-1}(c+d x)}}-\frac {\sqrt {2 \pi } \left (\left (\sinh \left (\frac {2 a}{b}\right )+\cosh \left (\frac {2 a}{b}\right )\right ) \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )+\left (\sinh \left (\frac {2 a}{b}\right )-\cosh \left (\frac {2 a}{b}\right )\right ) \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )\right )}{\sqrt {b}}}{8 d^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

((4*c*E^((2*a)/b)*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, a/b + ArcSinh[c + d*x]] - 4*c*Sqrt[-((a + b*ArcSinh[
c + d*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c + d*x])/b)])/(E^(a/b)*Sqrt[a + b*ArcSinh[c + d*x]]) - (Sqrt[2*Pi]*
(Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*(-Cosh[(2*a)/b] + Sinh[(2*a)/b]) + Erf[(Sqrt[2]*Sqrt[a +
 b*ArcSinh[c + d*x]])/Sqrt[b]]*(Cosh[(2*a)/b] + Sinh[(2*a)/b])))/Sqrt[b])/(8*d^2)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {b \operatorname {arsinh}\left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(x/sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

maple [F]  time = 0.49, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a +b \arcsinh \left (d x +c \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int(x/(a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {b \operatorname {arsinh}\left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(x/sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x}{\sqrt {a+b\,\mathrm {asinh}\left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + b*asinh(c + d*x))^(1/2),x)

[Out]

int(x/(a + b*asinh(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*asinh(d*x+c))**(1/2),x)

[Out]

Integral(x/sqrt(a + b*asinh(c + d*x)), x)

________________________________________________________________________________________