3.7 \(\int \frac {\text {csch}^2(2+3 x)}{1-2 \coth ^2(2+3 x)} \, dx\)

Optimal. Leaf size=22 \[ -\frac {\tanh ^{-1}\left (\frac {\tanh (3 x+2)}{\sqrt {2}}\right )}{3 \sqrt {2}} \]

[Out]

-1/6*arctanh(1/2*2^(1/2)*tanh(2+3*x))*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {3675, 206} \[ -\frac {\tanh ^{-1}\left (\frac {\tanh (3 x+2)}{\sqrt {2}}\right )}{3 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[Csch[2 + 3*x]^2/(1 - 2*Coth[2 + 3*x]^2),x]

[Out]

-ArcTanh[Tanh[2 + 3*x]/Sqrt[2]]/(3*Sqrt[2])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3675

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {\text {csch}^2(2+3 x)}{1-2 \coth ^2(2+3 x)} \, dx &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{1-2 x^2} \, dx,x,\coth (2+3 x)\right )\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {\tanh (2+3 x)}{\sqrt {2}}\right )}{3 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 42, normalized size = 1.91 \[ \frac {\tanh ^{-1}\left (\frac {\left (1-6 e^4+e^8\right ) \tanh (3 x)+e^8-1}{4 \sqrt {2} e^4}\right )}{3 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[2 + 3*x]^2/(1 - 2*Coth[2 + 3*x]^2),x]

[Out]

ArcTanh[(-1 + E^8 + (1 - 6*E^4 + E^8)*Tanh[3*x])/(4*Sqrt[2]*E^4)]/(3*Sqrt[2])

________________________________________________________________________________________

fricas [B]  time = 0.45, size = 89, normalized size = 4.05 \[ \frac {1}{12} \, \sqrt {2} \log \left (\frac {3 \, {\left (2 \, \sqrt {2} + 3\right )} \cosh \left (3 \, x + 2\right )^{2} - 4 \, {\left (3 \, \sqrt {2} + 4\right )} \cosh \left (3 \, x + 2\right ) \sinh \left (3 \, x + 2\right ) + 3 \, {\left (2 \, \sqrt {2} + 3\right )} \sinh \left (3 \, x + 2\right )^{2} + 2 \, \sqrt {2} + 3}{\cosh \left (3 \, x + 2\right )^{2} + \sinh \left (3 \, x + 2\right )^{2} + 3}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2+3*x)^2/(1-2*coth(2+3*x)^2),x, algorithm="fricas")

[Out]

1/12*sqrt(2)*log((3*(2*sqrt(2) + 3)*cosh(3*x + 2)^2 - 4*(3*sqrt(2) + 4)*cosh(3*x + 2)*sinh(3*x + 2) + 3*(2*sqr
t(2) + 3)*sinh(3*x + 2)^2 + 2*sqrt(2) + 3)/(cosh(3*x + 2)^2 + sinh(3*x + 2)^2 + 3))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2+3*x)^2/(1-2*coth(2+3*x)^2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.45, size = 102, normalized size = 4.64 \[ -\frac {\sqrt {2}\, \ln \left (\frac {\tanh ^{2}\left (1+\frac {3 x}{2}\right )+\sqrt {2}\, \tanh \left (1+\frac {3 x}{2}\right )+1}{\tanh ^{2}\left (1+\frac {3 x}{2}\right )-\sqrt {2}\, \tanh \left (1+\frac {3 x}{2}\right )+1}\right )}{24}+\frac {\sqrt {2}\, \ln \left (\frac {\tanh ^{2}\left (1+\frac {3 x}{2}\right )-\sqrt {2}\, \tanh \left (1+\frac {3 x}{2}\right )+1}{\tanh ^{2}\left (1+\frac {3 x}{2}\right )+\sqrt {2}\, \tanh \left (1+\frac {3 x}{2}\right )+1}\right )}{24} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(2+3*x)^2/(1-2*coth(2+3*x)^2),x)

[Out]

-1/24*2^(1/2)*ln((tanh(1+3/2*x)^2+2^(1/2)*tanh(1+3/2*x)+1)/(tanh(1+3/2*x)^2-2^(1/2)*tanh(1+3/2*x)+1))+1/24*2^(
1/2)*ln((tanh(1+3/2*x)^2-2^(1/2)*tanh(1+3/2*x)+1)/(tanh(1+3/2*x)^2+2^(1/2)*tanh(1+3/2*x)+1))

________________________________________________________________________________________

maxima [B]  time = 0.52, size = 38, normalized size = 1.73 \[ \frac {1}{12} \, \sqrt {2} \log \left (-\frac {2 \, \sqrt {2} - e^{\left (-6 \, x - 4\right )} - 3}{2 \, \sqrt {2} + e^{\left (-6 \, x - 4\right )} + 3}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2+3*x)^2/(1-2*coth(2+3*x)^2),x, algorithm="maxima")

[Out]

1/12*sqrt(2)*log(-(2*sqrt(2) - e^(-6*x - 4) - 3)/(2*sqrt(2) + e^(-6*x - 4) + 3))

________________________________________________________________________________________

mupad [B]  time = 1.88, size = 57, normalized size = 2.59 \[ -\frac {\sqrt {2}\,\left (\ln \left (4\,{\mathrm {e}}^{6\,x+4}+\sqrt {2}\,\left (3\,{\mathrm {e}}^{6\,x+4}+1\right )\right )-\ln \left (4\,{\mathrm {e}}^{6\,x+4}-\sqrt {2}\,\left (3\,{\mathrm {e}}^{6\,x+4}+1\right )\right )\right )}{12} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-1/(sinh(3*x + 2)^2*(2*coth(3*x + 2)^2 - 1)),x)

[Out]

-(2^(1/2)*(log(4*exp(6*x + 4) + 2^(1/2)*(3*exp(6*x + 4) + 1)) - log(4*exp(6*x + 4) - 2^(1/2)*(3*exp(6*x + 4) +
 1))))/12

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {\operatorname {csch}^{2}{\left (3 x + 2 \right )}}{2 \coth ^{2}{\left (3 x + 2 \right )} - 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2+3*x)**2/(1-2*coth(2+3*x)**2),x)

[Out]

-Integral(csch(3*x + 2)**2/(2*coth(3*x + 2)**2 - 1), x)

________________________________________________________________________________________