3.616 \(\int (a \text {sech}(x)+b \tanh (x))^3 \, dx\)

Optimal. Leaf size=58 \[ \frac {1}{2} a \left (a^2+3 b^2\right ) \tan ^{-1}(\sinh (x))-\frac {1}{2} a b^2 \sinh (x)-\frac {1}{2} \text {sech}^2(x) (b-a \sinh (x)) (a+b \sinh (x))^2+b^3 \log (\cosh (x)) \]

[Out]

1/2*a*(a^2+3*b^2)*arctan(sinh(x))+b^3*ln(cosh(x))-1/2*a*b^2*sinh(x)-1/2*sech(x)^2*(b-a*sinh(x))*(a+b*sinh(x))^
2

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.636, Rules used = {4391, 2668, 739, 774, 635, 204, 260} \[ \frac {1}{2} a \left (a^2+3 b^2\right ) \tan ^{-1}(\sinh (x))-\frac {1}{2} a b^2 \sinh (x)-\frac {1}{2} \text {sech}^2(x) (b-a \sinh (x)) (a+b \sinh (x))^2+b^3 \log (\cosh (x)) \]

Antiderivative was successfully verified.

[In]

Int[(a*Sech[x] + b*Tanh[x])^3,x]

[Out]

(a*(a^2 + 3*b^2)*ArcTan[Sinh[x]])/2 + b^3*Log[Cosh[x]] - (a*b^2*Sinh[x])/2 - (Sech[x]^2*(b - a*Sinh[x])*(a + b
*Sinh[x])^2)/2

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
 + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
 c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 774

Int[(((d_.) + (e_.)*(x_))*((f_) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*g*x)/c, x] + Dist[1
/c, Int[(c*d*f - a*e*g + c*(e*f + d*g)*x)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x]

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 4391

Int[(u_.)*((b_.)*sec[(c_.) + (d_.)*(x_)]^(n_.) + (a_.)*tan[(c_.) + (d_.)*(x_)]^(n_.))^(p_), x_Symbol] :> Int[A
ctivateTrig[u]*Sec[c + d*x]^(n*p)*(b + a*Sin[c + d*x]^n)^p, x] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int (a \text {sech}(x)+b \tanh (x))^3 \, dx &=\int \text {sech}^3(x) (a+b \sinh (x))^3 \, dx\\ &=b^3 \operatorname {Subst}\left (\int \frac {(a+x)^3}{\left (-b^2-x^2\right )^2} \, dx,x,b \sinh (x)\right )\\ &=-\frac {1}{2} \text {sech}^2(x) (b-a \sinh (x)) (a+b \sinh (x))^2+\frac {1}{2} b \operatorname {Subst}\left (\int \frac {(a+x) \left (-a^2-2 b^2+a x\right )}{-b^2-x^2} \, dx,x,b \sinh (x)\right )\\ &=-\frac {1}{2} a b^2 \sinh (x)-\frac {1}{2} \text {sech}^2(x) (b-a \sinh (x)) (a+b \sinh (x))^2-\frac {1}{2} b \operatorname {Subst}\left (\int \frac {a b^2-a \left (-a^2-2 b^2\right )+2 b^2 x}{-b^2-x^2} \, dx,x,b \sinh (x)\right )\\ &=-\frac {1}{2} a b^2 \sinh (x)-\frac {1}{2} \text {sech}^2(x) (b-a \sinh (x)) (a+b \sinh (x))^2-b^3 \operatorname {Subst}\left (\int \frac {x}{-b^2-x^2} \, dx,x,b \sinh (x)\right )-\frac {1}{2} \left (a b \left (a^2+3 b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-b^2-x^2} \, dx,x,b \sinh (x)\right )\\ &=\frac {1}{2} a \left (a^2+3 b^2\right ) \tan ^{-1}(\sinh (x))+b^3 \log (\cosh (x))-\frac {1}{2} a b^2 \sinh (x)-\frac {1}{2} \text {sech}^2(x) (b-a \sinh (x)) (a+b \sinh (x))^2\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.99, size = 194, normalized size = 3.34 \[ \frac {1}{4} \left (\frac {b \left (\left (a^3+3 a b^2-2 \left (-b^2\right )^{3/2}\right ) \log \left (\sqrt {-b^2}-b \sinh (x)\right )-\left (a^3+3 a b^2+2 \left (-b^2\right )^{3/2}\right ) \log \left (\sqrt {-b^2}+b \sinh (x)\right )\right )}{\sqrt {-b^2}}+\frac {2 a^4 b \text {sech}^2(x)}{a^2+b^2}+\frac {a \tanh (x) \text {sech}(x) \left (2 a^4-4 a^2 b^2+b^4 \cosh (2 x)-7 b^4\right )}{a^2+b^2}-\frac {2 b \tanh ^2(x) \left (-4 a^4-2 a^2 b^2+a b^3 \sinh (x)+b^4\right )}{a^2+b^2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Sech[x] + b*Tanh[x])^3,x]

[Out]

((b*((a^3 + 3*a*b^2 - 2*(-b^2)^(3/2))*Log[Sqrt[-b^2] - b*Sinh[x]] - (a^3 + 3*a*b^2 + 2*(-b^2)^(3/2))*Log[Sqrt[
-b^2] + b*Sinh[x]]))/Sqrt[-b^2] + (2*a^4*b*Sech[x]^2)/(a^2 + b^2) + (a*(2*a^4 - 4*a^2*b^2 - 7*b^4 + b^4*Cosh[2
*x])*Sech[x]*Tanh[x])/(a^2 + b^2) - (2*b*(-4*a^4 - 2*a^2*b^2 + b^4 + a*b^3*Sinh[x])*Tanh[x]^2)/(a^2 + b^2))/4

________________________________________________________________________________________

fricas [B]  time = 0.41, size = 502, normalized size = 8.66 \[ -\frac {b^{3} x \cosh \relax (x)^{4} + b^{3} x \sinh \relax (x)^{4} + b^{3} x - {\left (a^{3} - 3 \, a b^{2}\right )} \cosh \relax (x)^{3} + {\left (4 \, b^{3} x \cosh \relax (x) - a^{3} + 3 \, a b^{2}\right )} \sinh \relax (x)^{3} + 2 \, {\left (b^{3} x + 3 \, a^{2} b - b^{3}\right )} \cosh \relax (x)^{2} + {\left (6 \, b^{3} x \cosh \relax (x)^{2} + 2 \, b^{3} x + 6 \, a^{2} b - 2 \, b^{3} - 3 \, {\left (a^{3} - 3 \, a b^{2}\right )} \cosh \relax (x)\right )} \sinh \relax (x)^{2} - {\left ({\left (a^{3} + 3 \, a b^{2}\right )} \cosh \relax (x)^{4} + 4 \, {\left (a^{3} + 3 \, a b^{2}\right )} \cosh \relax (x) \sinh \relax (x)^{3} + {\left (a^{3} + 3 \, a b^{2}\right )} \sinh \relax (x)^{4} + a^{3} + 3 \, a b^{2} + 2 \, {\left (a^{3} + 3 \, a b^{2}\right )} \cosh \relax (x)^{2} + 2 \, {\left (a^{3} + 3 \, a b^{2} + 3 \, {\left (a^{3} + 3 \, a b^{2}\right )} \cosh \relax (x)^{2}\right )} \sinh \relax (x)^{2} + 4 \, {\left ({\left (a^{3} + 3 \, a b^{2}\right )} \cosh \relax (x)^{3} + {\left (a^{3} + 3 \, a b^{2}\right )} \cosh \relax (x)\right )} \sinh \relax (x)\right )} \arctan \left (\cosh \relax (x) + \sinh \relax (x)\right ) + {\left (a^{3} - 3 \, a b^{2}\right )} \cosh \relax (x) - {\left (b^{3} \cosh \relax (x)^{4} + 4 \, b^{3} \cosh \relax (x) \sinh \relax (x)^{3} + b^{3} \sinh \relax (x)^{4} + 2 \, b^{3} \cosh \relax (x)^{2} + b^{3} + 2 \, {\left (3 \, b^{3} \cosh \relax (x)^{2} + b^{3}\right )} \sinh \relax (x)^{2} + 4 \, {\left (b^{3} \cosh \relax (x)^{3} + b^{3} \cosh \relax (x)\right )} \sinh \relax (x)\right )} \log \left (\frac {2 \, \cosh \relax (x)}{\cosh \relax (x) - \sinh \relax (x)}\right ) + {\left (4 \, b^{3} x \cosh \relax (x)^{3} + a^{3} - 3 \, a b^{2} - 3 \, {\left (a^{3} - 3 \, a b^{2}\right )} \cosh \relax (x)^{2} + 4 \, {\left (b^{3} x + 3 \, a^{2} b - b^{3}\right )} \cosh \relax (x)\right )} \sinh \relax (x)}{\cosh \relax (x)^{4} + 4 \, \cosh \relax (x) \sinh \relax (x)^{3} + \sinh \relax (x)^{4} + 2 \, {\left (3 \, \cosh \relax (x)^{2} + 1\right )} \sinh \relax (x)^{2} + 2 \, \cosh \relax (x)^{2} + 4 \, {\left (\cosh \relax (x)^{3} + \cosh \relax (x)\right )} \sinh \relax (x) + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sech(x)+b*tanh(x))^3,x, algorithm="fricas")

[Out]

-(b^3*x*cosh(x)^4 + b^3*x*sinh(x)^4 + b^3*x - (a^3 - 3*a*b^2)*cosh(x)^3 + (4*b^3*x*cosh(x) - a^3 + 3*a*b^2)*si
nh(x)^3 + 2*(b^3*x + 3*a^2*b - b^3)*cosh(x)^2 + (6*b^3*x*cosh(x)^2 + 2*b^3*x + 6*a^2*b - 2*b^3 - 3*(a^3 - 3*a*
b^2)*cosh(x))*sinh(x)^2 - ((a^3 + 3*a*b^2)*cosh(x)^4 + 4*(a^3 + 3*a*b^2)*cosh(x)*sinh(x)^3 + (a^3 + 3*a*b^2)*s
inh(x)^4 + a^3 + 3*a*b^2 + 2*(a^3 + 3*a*b^2)*cosh(x)^2 + 2*(a^3 + 3*a*b^2 + 3*(a^3 + 3*a*b^2)*cosh(x)^2)*sinh(
x)^2 + 4*((a^3 + 3*a*b^2)*cosh(x)^3 + (a^3 + 3*a*b^2)*cosh(x))*sinh(x))*arctan(cosh(x) + sinh(x)) + (a^3 - 3*a
*b^2)*cosh(x) - (b^3*cosh(x)^4 + 4*b^3*cosh(x)*sinh(x)^3 + b^3*sinh(x)^4 + 2*b^3*cosh(x)^2 + b^3 + 2*(3*b^3*co
sh(x)^2 + b^3)*sinh(x)^2 + 4*(b^3*cosh(x)^3 + b^3*cosh(x))*sinh(x))*log(2*cosh(x)/(cosh(x) - sinh(x))) + (4*b^
3*x*cosh(x)^3 + a^3 - 3*a*b^2 - 3*(a^3 - 3*a*b^2)*cosh(x)^2 + 4*(b^3*x + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cos
h(x)^4 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 2*(3*cosh(x)^2 + 1)*sinh(x)^2 + 2*cosh(x)^2 + 4*(cosh(x)^3 + cosh(x
))*sinh(x) + 1)

________________________________________________________________________________________

giac [B]  time = 0.12, size = 117, normalized size = 2.02 \[ \frac {1}{2} \, b^{3} \log \left ({\left (e^{\left (-x\right )} - e^{x}\right )}^{2} + 4\right ) + \frac {1}{4} \, {\left (\pi + 2 \, \arctan \left (\frac {1}{2} \, {\left (e^{\left (2 \, x\right )} - 1\right )} e^{\left (-x\right )}\right )\right )} {\left (a^{3} + 3 \, a b^{2}\right )} - \frac {b^{3} {\left (e^{\left (-x\right )} - e^{x}\right )}^{2} + 2 \, a^{3} {\left (e^{\left (-x\right )} - e^{x}\right )} - 6 \, a b^{2} {\left (e^{\left (-x\right )} - e^{x}\right )} + 12 \, a^{2} b}{2 \, {\left ({\left (e^{\left (-x\right )} - e^{x}\right )}^{2} + 4\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sech(x)+b*tanh(x))^3,x, algorithm="giac")

[Out]

1/2*b^3*log((e^(-x) - e^x)^2 + 4) + 1/4*(pi + 2*arctan(1/2*(e^(2*x) - 1)*e^(-x)))*(a^3 + 3*a*b^2) - 1/2*(b^3*(
e^(-x) - e^x)^2 + 2*a^3*(e^(-x) - e^x) - 6*a*b^2*(e^(-x) - e^x) + 12*a^2*b)/((e^(-x) - e^x)^2 + 4)

________________________________________________________________________________________

maple [A]  time = 0.37, size = 75, normalized size = 1.29 \[ \frac {a^{3} \mathrm {sech}\relax (x ) \tanh \relax (x )}{2}+a^{3} \arctan \left ({\mathrm e}^{x}\right )-\frac {3 a^{2} b}{2 \cosh \relax (x )^{2}}-\frac {3 a \,b^{2} \sinh \relax (x )}{\cosh \relax (x )^{2}}+\frac {3 a \,b^{2} \mathrm {sech}\relax (x ) \tanh \relax (x )}{2}+3 a \,b^{2} \arctan \left ({\mathrm e}^{x}\right )+b^{3} \ln \left (\cosh \relax (x )\right )-\frac {b^{3} \left (\tanh ^{2}\relax (x )\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*sech(x)+b*tanh(x))^3,x)

[Out]

1/2*a^3*sech(x)*tanh(x)+a^3*arctan(exp(x))-3/2*a^2*b/cosh(x)^2-3*a*b^2/cosh(x)^2*sinh(x)+3/2*a*b^2*sech(x)*tan
h(x)+3*a*b^2*arctan(exp(x))+b^3*ln(cosh(x))-1/2*b^3*tanh(x)^2

________________________________________________________________________________________

maxima [B]  time = 0.56, size = 120, normalized size = 2.07 \[ \frac {3}{2} \, a^{2} b \tanh \relax (x)^{2} + b^{3} {\left (x + \frac {2 \, e^{\left (-2 \, x\right )}}{2 \, e^{\left (-2 \, x\right )} + e^{\left (-4 \, x\right )} + 1} + \log \left (e^{\left (-2 \, x\right )} + 1\right )\right )} - 3 \, a b^{2} {\left (\frac {e^{\left (-x\right )} - e^{\left (-3 \, x\right )}}{2 \, e^{\left (-2 \, x\right )} + e^{\left (-4 \, x\right )} + 1} + \arctan \left (e^{\left (-x\right )}\right )\right )} + a^{3} {\left (\frac {e^{\left (-x\right )} - e^{\left (-3 \, x\right )}}{2 \, e^{\left (-2 \, x\right )} + e^{\left (-4 \, x\right )} + 1} - \arctan \left (e^{\left (-x\right )}\right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sech(x)+b*tanh(x))^3,x, algorithm="maxima")

[Out]

3/2*a^2*b*tanh(x)^2 + b^3*(x + 2*e^(-2*x)/(2*e^(-2*x) + e^(-4*x) + 1) + log(e^(-2*x) + 1)) - 3*a*b^2*((e^(-x)
- e^(-3*x))/(2*e^(-2*x) + e^(-4*x) + 1) + arctan(e^(-x))) + a^3*((e^(-x) - e^(-3*x))/(2*e^(-2*x) + e^(-4*x) +
1) - arctan(e^(-x)))

________________________________________________________________________________________

mupad [B]  time = 1.61, size = 233, normalized size = 4.02 \[ \mathrm {atan}\left (\frac {{\mathrm {e}}^x\,\left (a^3+3\,a\,b^2\right )}{\sqrt {a^6+6\,a^4\,b^2+9\,a^2\,b^4}}\right )\,\sqrt {a^6+6\,a^4\,b^2+9\,a^2\,b^4}+\frac {{\mathrm {e}}^x\,\left (6\,a\,b^2-2\,a^3\right )+6\,a^2\,b-2\,b^3}{2\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x}+1}+b^3\,\ln \left (\left (a^3\,{\mathrm {e}}^x-2\,\sqrt {-\frac {a^6}{4}-\frac {3\,a^4\,b^2}{2}-\frac {9\,a^2\,b^4}{4}}+3\,a\,b^2\,{\mathrm {e}}^x\right )\,\left (2\,\sqrt {-\frac {a^6}{4}-\frac {3\,a^4\,b^2}{2}-\frac {9\,a^2\,b^4}{4}}+a^3\,{\mathrm {e}}^x+3\,a\,b^2\,{\mathrm {e}}^x\right )\right )-b^3\,x-\frac {{\mathrm {e}}^x\,\left (3\,a\,b^2-a^3\right )+6\,a^2\,b-2\,b^3}{{\mathrm {e}}^{2\,x}+1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tanh(x) + a/cosh(x))^3,x)

[Out]

atan((exp(x)*(3*a*b^2 + a^3))/(a^6 + 9*a^2*b^4 + 6*a^4*b^2)^(1/2))*(a^6 + 9*a^2*b^4 + 6*a^4*b^2)^(1/2) + (exp(
x)*(6*a*b^2 - 2*a^3) + 6*a^2*b - 2*b^3)/(2*exp(2*x) + exp(4*x) + 1) + b^3*log((a^3*exp(x) - 2*(- a^6/4 - (9*a^
2*b^4)/4 - (3*a^4*b^2)/2)^(1/2) + 3*a*b^2*exp(x))*(2*(- a^6/4 - (9*a^2*b^4)/4 - (3*a^4*b^2)/2)^(1/2) + a^3*exp
(x) + 3*a*b^2*exp(x))) - b^3*x - (exp(x)*(3*a*b^2 - a^3) + 6*a^2*b - 2*b^3)/(exp(2*x) + 1)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \operatorname {sech}{\relax (x )} + b \tanh {\relax (x )}\right )^{3}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sech(x)+b*tanh(x))**3,x)

[Out]

Integral((a*sech(x) + b*tanh(x))**3, x)

________________________________________________________________________________________