3.541 \(\int \frac {x \sinh (a+b x)}{\sqrt {\text {sech}(a+b x)}} \, dx\)

Optimal. Leaf size=84 \[ -\frac {4 \sinh (a+b x)}{9 b^2 \sqrt {\text {sech}(a+b x)}}+\frac {4 i \sqrt {\cosh (a+b x)} \sqrt {\text {sech}(a+b x)} F\left (\left .\frac {1}{2} i (a+b x)\right |2\right )}{9 b^2}+\frac {2 x}{3 b \text {sech}^{\frac {3}{2}}(a+b x)} \]

[Out]

2/3*x/b/sech(b*x+a)^(3/2)-4/9*sinh(b*x+a)/b^2/sech(b*x+a)^(1/2)+4/9*I*(cosh(1/2*a+1/2*b*x)^2)^(1/2)/cosh(1/2*a
+1/2*b*x)*EllipticF(I*sinh(1/2*a+1/2*b*x),2^(1/2))*cosh(b*x+a)^(1/2)*sech(b*x+a)^(1/2)/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5444, 3769, 3771, 2641} \[ -\frac {4 \sinh (a+b x)}{9 b^2 \sqrt {\text {sech}(a+b x)}}+\frac {4 i \sqrt {\cosh (a+b x)} \sqrt {\text {sech}(a+b x)} F\left (\left .\frac {1}{2} i (a+b x)\right |2\right )}{9 b^2}+\frac {2 x}{3 b \text {sech}^{\frac {3}{2}}(a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sinh[a + b*x])/Sqrt[Sech[a + b*x]],x]

[Out]

(2*x)/(3*b*Sech[a + b*x]^(3/2)) + (((4*I)/9)*Sqrt[Cosh[a + b*x]]*EllipticF[(I/2)*(a + b*x), 2]*Sqrt[Sech[a + b
*x]])/b^2 - (4*Sinh[a + b*x])/(9*b^2*Sqrt[Sech[a + b*x]])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 5444

Int[(x_)^(m_.)*Sech[(a_.) + (b_.)*(x_)^(n_.)]^(p_)*Sinh[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> -Simp[(x^(m -
n + 1)*Sech[a + b*x^n]^(p - 1))/(b*n*(p - 1)), x] + Dist[(m - n + 1)/(b*n*(p - 1)), Int[x^(m - n)*Sech[a + b*x
^n]^(p - 1), x], x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1]

Rubi steps

\begin {align*} \int \frac {x \sinh (a+b x)}{\sqrt {\text {sech}(a+b x)}} \, dx &=\frac {2 x}{3 b \text {sech}^{\frac {3}{2}}(a+b x)}-\frac {2 \int \frac {1}{\text {sech}^{\frac {3}{2}}(a+b x)} \, dx}{3 b}\\ &=\frac {2 x}{3 b \text {sech}^{\frac {3}{2}}(a+b x)}-\frac {4 \sinh (a+b x)}{9 b^2 \sqrt {\text {sech}(a+b x)}}-\frac {2 \int \sqrt {\text {sech}(a+b x)} \, dx}{9 b}\\ &=\frac {2 x}{3 b \text {sech}^{\frac {3}{2}}(a+b x)}-\frac {4 \sinh (a+b x)}{9 b^2 \sqrt {\text {sech}(a+b x)}}-\frac {\left (2 \sqrt {\cosh (a+b x)} \sqrt {\text {sech}(a+b x)}\right ) \int \frac {1}{\sqrt {\cosh (a+b x)}} \, dx}{9 b}\\ &=\frac {2 x}{3 b \text {sech}^{\frac {3}{2}}(a+b x)}+\frac {4 i \sqrt {\cosh (a+b x)} F\left (\left .\frac {1}{2} i (a+b x)\right |2\right ) \sqrt {\text {sech}(a+b x)}}{9 b^2}-\frac {4 \sinh (a+b x)}{9 b^2 \sqrt {\text {sech}(a+b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 71, normalized size = 0.85 \[ \frac {\sqrt {\text {sech}(a+b x)} \left (-2 \sinh (2 (a+b x))+3 b x \cosh (2 (a+b x))+4 i \sqrt {\cosh (a+b x)} F\left (\left .\frac {1}{2} i (a+b x)\right |2\right )+3 b x\right )}{9 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sinh[a + b*x])/Sqrt[Sech[a + b*x]],x]

[Out]

(Sqrt[Sech[a + b*x]]*(3*b*x + 3*b*x*Cosh[2*(a + b*x)] + (4*I)*Sqrt[Cosh[a + b*x]]*EllipticF[(I/2)*(a + b*x), 2
] - 2*Sinh[2*(a + b*x)]))/(9*b^2)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sinh(b*x+a)/sech(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \sinh \left (b x + a\right )}{\sqrt {\operatorname {sech}\left (b x + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sinh(b*x+a)/sech(b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x*sinh(b*x + a)/sqrt(sech(b*x + a)), x)

________________________________________________________________________________________

maple [F]  time = 0.14, size = 0, normalized size = 0.00 \[ \int \frac {x \sinh \left (b x +a \right )}{\sqrt {\mathrm {sech}\left (b x +a \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sinh(b*x+a)/sech(b*x+a)^(1/2),x)

[Out]

int(x*sinh(b*x+a)/sech(b*x+a)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \sinh \left (b x + a\right )}{\sqrt {\operatorname {sech}\left (b x + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sinh(b*x+a)/sech(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x*sinh(b*x + a)/sqrt(sech(b*x + a)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,\mathrm {sinh}\left (a+b\,x\right )}{\sqrt {\frac {1}{\mathrm {cosh}\left (a+b\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*sinh(a + b*x))/(1/cosh(a + b*x))^(1/2),x)

[Out]

int((x*sinh(a + b*x))/(1/cosh(a + b*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \sinh {\left (a + b x \right )}}{\sqrt {\operatorname {sech}{\left (a + b x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sinh(b*x+a)/sech(b*x+a)**(1/2),x)

[Out]

Integral(x*sinh(a + b*x)/sqrt(sech(a + b*x)), x)

________________________________________________________________________________________