3.33 \(\int \text {csch}^2(a+b x) \text {sech}^5(a+b x) \, dx\)

Optimal. Leaf size=70 \[ -\frac {15 \text {csch}(a+b x)}{8 b}-\frac {15 \tan ^{-1}(\sinh (a+b x))}{8 b}+\frac {\text {csch}(a+b x) \text {sech}^4(a+b x)}{4 b}+\frac {5 \text {csch}(a+b x) \text {sech}^2(a+b x)}{8 b} \]

[Out]

-15/8*arctan(sinh(b*x+a))/b-15/8*csch(b*x+a)/b+5/8*csch(b*x+a)*sech(b*x+a)^2/b+1/4*csch(b*x+a)*sech(b*x+a)^4/b

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {2621, 288, 321, 207} \[ -\frac {15 \text {csch}(a+b x)}{8 b}-\frac {15 \tan ^{-1}(\sinh (a+b x))}{8 b}+\frac {\text {csch}(a+b x) \text {sech}^4(a+b x)}{4 b}+\frac {5 \text {csch}(a+b x) \text {sech}^2(a+b x)}{8 b} \]

Antiderivative was successfully verified.

[In]

Int[Csch[a + b*x]^2*Sech[a + b*x]^5,x]

[Out]

(-15*ArcTan[Sinh[a + b*x]])/(8*b) - (15*Csch[a + b*x])/(8*b) + (5*Csch[a + b*x]*Sech[a + b*x]^2)/(8*b) + (Csch
[a + b*x]*Sech[a + b*x]^4)/(4*b)

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2621

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(f*a^n)^(-1), Subst
[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Integer
Q[(n + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rubi steps

\begin {align*} \int \text {csch}^2(a+b x) \text {sech}^5(a+b x) \, dx &=-\frac {i \operatorname {Subst}\left (\int \frac {x^6}{\left (-1+x^2\right )^3} \, dx,x,-i \text {csch}(a+b x)\right )}{b}\\ &=\frac {\text {csch}(a+b x) \text {sech}^4(a+b x)}{4 b}-\frac {(5 i) \operatorname {Subst}\left (\int \frac {x^4}{\left (-1+x^2\right )^2} \, dx,x,-i \text {csch}(a+b x)\right )}{4 b}\\ &=\frac {5 \text {csch}(a+b x) \text {sech}^2(a+b x)}{8 b}+\frac {\text {csch}(a+b x) \text {sech}^4(a+b x)}{4 b}-\frac {(15 i) \operatorname {Subst}\left (\int \frac {x^2}{-1+x^2} \, dx,x,-i \text {csch}(a+b x)\right )}{8 b}\\ &=-\frac {15 \text {csch}(a+b x)}{8 b}+\frac {5 \text {csch}(a+b x) \text {sech}^2(a+b x)}{8 b}+\frac {\text {csch}(a+b x) \text {sech}^4(a+b x)}{4 b}-\frac {(15 i) \operatorname {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,-i \text {csch}(a+b x)\right )}{8 b}\\ &=-\frac {15 \tan ^{-1}(\sinh (a+b x))}{8 b}-\frac {15 \text {csch}(a+b x)}{8 b}+\frac {5 \text {csch}(a+b x) \text {sech}^2(a+b x)}{8 b}+\frac {\text {csch}(a+b x) \text {sech}^4(a+b x)}{4 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 29, normalized size = 0.41 \[ -\frac {\text {csch}(a+b x) \, _2F_1\left (-\frac {1}{2},3;\frac {1}{2};-\sinh ^2(a+b x)\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[a + b*x]^2*Sech[a + b*x]^5,x]

[Out]

-((Csch[a + b*x]*Hypergeometric2F1[-1/2, 3, 1/2, -Sinh[a + b*x]^2])/b)

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 1183, normalized size = 16.90 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(b*x+a)^2*sech(b*x+a)^5,x, algorithm="fricas")

[Out]

-1/4*(15*cosh(b*x + a)^9 + 135*cosh(b*x + a)*sinh(b*x + a)^8 + 15*sinh(b*x + a)^9 + 20*(27*cosh(b*x + a)^2 + 2
)*sinh(b*x + a)^7 + 40*cosh(b*x + a)^7 + 140*(9*cosh(b*x + a)^3 + 2*cosh(b*x + a))*sinh(b*x + a)^6 + 6*(315*co
sh(b*x + a)^4 + 140*cosh(b*x + a)^2 + 3)*sinh(b*x + a)^5 + 18*cosh(b*x + a)^5 + 10*(189*cosh(b*x + a)^5 + 140*
cosh(b*x + a)^3 + 9*cosh(b*x + a))*sinh(b*x + a)^4 + 20*(63*cosh(b*x + a)^6 + 70*cosh(b*x + a)^4 + 9*cosh(b*x
+ a)^2 + 2)*sinh(b*x + a)^3 + 40*cosh(b*x + a)^3 + 60*(9*cosh(b*x + a)^7 + 14*cosh(b*x + a)^5 + 3*cosh(b*x + a
)^3 + 2*cosh(b*x + a))*sinh(b*x + a)^2 + 15*(cosh(b*x + a)^10 + 10*cosh(b*x + a)*sinh(b*x + a)^9 + sinh(b*x +
a)^10 + 3*(15*cosh(b*x + a)^2 + 1)*sinh(b*x + a)^8 + 3*cosh(b*x + a)^8 + 24*(5*cosh(b*x + a)^3 + cosh(b*x + a)
)*sinh(b*x + a)^7 + 2*(105*cosh(b*x + a)^4 + 42*cosh(b*x + a)^2 + 1)*sinh(b*x + a)^6 + 2*cosh(b*x + a)^6 + 12*
(21*cosh(b*x + a)^5 + 14*cosh(b*x + a)^3 + cosh(b*x + a))*sinh(b*x + a)^5 + 2*(105*cosh(b*x + a)^6 + 105*cosh(
b*x + a)^4 + 15*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^4 - 2*cosh(b*x + a)^4 + 8*(15*cosh(b*x + a)^7 + 21*cosh(b*x
 + a)^5 + 5*cosh(b*x + a)^3 - cosh(b*x + a))*sinh(b*x + a)^3 + 3*(15*cosh(b*x + a)^8 + 28*cosh(b*x + a)^6 + 10
*cosh(b*x + a)^4 - 4*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 - 3*cosh(b*x + a)^2 + 2*(5*cosh(b*x + a)^9 + 12*cosh
(b*x + a)^7 + 6*cosh(b*x + a)^5 - 4*cosh(b*x + a)^3 - 3*cosh(b*x + a))*sinh(b*x + a) - 1)*arctan(cosh(b*x + a)
 + sinh(b*x + a)) + 5*(27*cosh(b*x + a)^8 + 56*cosh(b*x + a)^6 + 18*cosh(b*x + a)^4 + 24*cosh(b*x + a)^2 + 3)*
sinh(b*x + a) + 15*cosh(b*x + a))/(b*cosh(b*x + a)^10 + 10*b*cosh(b*x + a)*sinh(b*x + a)^9 + b*sinh(b*x + a)^1
0 + 3*b*cosh(b*x + a)^8 + 3*(15*b*cosh(b*x + a)^2 + b)*sinh(b*x + a)^8 + 24*(5*b*cosh(b*x + a)^3 + b*cosh(b*x
+ a))*sinh(b*x + a)^7 + 2*b*cosh(b*x + a)^6 + 2*(105*b*cosh(b*x + a)^4 + 42*b*cosh(b*x + a)^2 + b)*sinh(b*x +
a)^6 + 12*(21*b*cosh(b*x + a)^5 + 14*b*cosh(b*x + a)^3 + b*cosh(b*x + a))*sinh(b*x + a)^5 - 2*b*cosh(b*x + a)^
4 + 2*(105*b*cosh(b*x + a)^6 + 105*b*cosh(b*x + a)^4 + 15*b*cosh(b*x + a)^2 - b)*sinh(b*x + a)^4 + 8*(15*b*cos
h(b*x + a)^7 + 21*b*cosh(b*x + a)^5 + 5*b*cosh(b*x + a)^3 - b*cosh(b*x + a))*sinh(b*x + a)^3 - 3*b*cosh(b*x +
a)^2 + 3*(15*b*cosh(b*x + a)^8 + 28*b*cosh(b*x + a)^6 + 10*b*cosh(b*x + a)^4 - 4*b*cosh(b*x + a)^2 - b)*sinh(b
*x + a)^2 + 2*(5*b*cosh(b*x + a)^9 + 12*b*cosh(b*x + a)^7 + 6*b*cosh(b*x + a)^5 - 4*b*cosh(b*x + a)^3 - 3*b*co
sh(b*x + a))*sinh(b*x + a) - b)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 124, normalized size = 1.77 \[ -\frac {15 \, \pi + \frac {4 \, {\left (7 \, {\left (e^{\left (b x + a\right )} - e^{\left (-b x - a\right )}\right )}^{3} + 36 \, e^{\left (b x + a\right )} - 36 \, e^{\left (-b x - a\right )}\right )}}{{\left ({\left (e^{\left (b x + a\right )} - e^{\left (-b x - a\right )}\right )}^{2} + 4\right )}^{2}} + \frac {32}{e^{\left (b x + a\right )} - e^{\left (-b x - a\right )}} + 30 \, \arctan \left (\frac {1}{2} \, {\left (e^{\left (2 \, b x + 2 \, a\right )} - 1\right )} e^{\left (-b x - a\right )}\right )}{16 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(b*x+a)^2*sech(b*x+a)^5,x, algorithm="giac")

[Out]

-1/16*(15*pi + 4*(7*(e^(b*x + a) - e^(-b*x - a))^3 + 36*e^(b*x + a) - 36*e^(-b*x - a))/((e^(b*x + a) - e^(-b*x
 - a))^2 + 4)^2 + 32/(e^(b*x + a) - e^(-b*x - a)) + 30*arctan(1/2*(e^(2*b*x + 2*a) - 1)*e^(-b*x - a)))/b

________________________________________________________________________________________

maple [A]  time = 0.33, size = 71, normalized size = 1.01 \[ -\frac {1}{b \sinh \left (b x +a \right ) \cosh \left (b x +a \right )^{4}}-\frac {5 \mathrm {sech}\left (b x +a \right )^{3} \tanh \left (b x +a \right )}{4 b}-\frac {15 \,\mathrm {sech}\left (b x +a \right ) \tanh \left (b x +a \right )}{8 b}-\frac {15 \arctan \left ({\mathrm e}^{b x +a}\right )}{4 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(b*x+a)^2*sech(b*x+a)^5,x)

[Out]

-1/b/sinh(b*x+a)/cosh(b*x+a)^4-5/4*sech(b*x+a)^3*tanh(b*x+a)/b-15/8*sech(b*x+a)*tanh(b*x+a)/b-15/4*arctan(exp(
b*x+a))/b

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 136, normalized size = 1.94 \[ \frac {15 \, \arctan \left (e^{\left (-b x - a\right )}\right )}{4 \, b} - \frac {15 \, e^{\left (-b x - a\right )} + 40 \, e^{\left (-3 \, b x - 3 \, a\right )} + 18 \, e^{\left (-5 \, b x - 5 \, a\right )} + 40 \, e^{\left (-7 \, b x - 7 \, a\right )} + 15 \, e^{\left (-9 \, b x - 9 \, a\right )}}{4 \, b {\left (3 \, e^{\left (-2 \, b x - 2 \, a\right )} + 2 \, e^{\left (-4 \, b x - 4 \, a\right )} - 2 \, e^{\left (-6 \, b x - 6 \, a\right )} - 3 \, e^{\left (-8 \, b x - 8 \, a\right )} - e^{\left (-10 \, b x - 10 \, a\right )} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(b*x+a)^2*sech(b*x+a)^5,x, algorithm="maxima")

[Out]

15/4*arctan(e^(-b*x - a))/b - 1/4*(15*e^(-b*x - a) + 40*e^(-3*b*x - 3*a) + 18*e^(-5*b*x - 5*a) + 40*e^(-7*b*x
- 7*a) + 15*e^(-9*b*x - 9*a))/(b*(3*e^(-2*b*x - 2*a) + 2*e^(-4*b*x - 4*a) - 2*e^(-6*b*x - 6*a) - 3*e^(-8*b*x -
 8*a) - e^(-10*b*x - 10*a) + 1))

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 210, normalized size = 3.00 \[ \frac {3\,{\mathrm {e}}^{a+b\,x}}{2\,b\,\left (2\,{\mathrm {e}}^{2\,a+2\,b\,x}+{\mathrm {e}}^{4\,a+4\,b\,x}+1\right )}-\frac {15\,\mathrm {atan}\left (\frac {{\mathrm {e}}^{b\,x}\,{\mathrm {e}}^a\,\sqrt {b^2}}{b}\right )}{4\,\sqrt {b^2}}+\frac {6\,{\mathrm {e}}^{a+b\,x}}{b\,\left (3\,{\mathrm {e}}^{2\,a+2\,b\,x}+3\,{\mathrm {e}}^{4\,a+4\,b\,x}+{\mathrm {e}}^{6\,a+6\,b\,x}+1\right )}-\frac {4\,{\mathrm {e}}^{a+b\,x}}{b\,\left (4\,{\mathrm {e}}^{2\,a+2\,b\,x}+6\,{\mathrm {e}}^{4\,a+4\,b\,x}+4\,{\mathrm {e}}^{6\,a+6\,b\,x}+{\mathrm {e}}^{8\,a+8\,b\,x}+1\right )}-\frac {2\,{\mathrm {e}}^{a+b\,x}}{b\,\left ({\mathrm {e}}^{2\,a+2\,b\,x}-1\right )}-\frac {7\,{\mathrm {e}}^{a+b\,x}}{4\,b\,\left ({\mathrm {e}}^{2\,a+2\,b\,x}+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(a + b*x)^5*sinh(a + b*x)^2),x)

[Out]

(3*exp(a + b*x))/(2*b*(2*exp(2*a + 2*b*x) + exp(4*a + 4*b*x) + 1)) - (15*atan((exp(b*x)*exp(a)*(b^2)^(1/2))/b)
)/(4*(b^2)^(1/2)) + (6*exp(a + b*x))/(b*(3*exp(2*a + 2*b*x) + 3*exp(4*a + 4*b*x) + exp(6*a + 6*b*x) + 1)) - (4
*exp(a + b*x))/(b*(4*exp(2*a + 2*b*x) + 6*exp(4*a + 4*b*x) + 4*exp(6*a + 6*b*x) + exp(8*a + 8*b*x) + 1)) - (2*
exp(a + b*x))/(b*(exp(2*a + 2*b*x) - 1)) - (7*exp(a + b*x))/(4*b*(exp(2*a + 2*b*x) + 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {csch}^{2}{\left (a + b x \right )} \operatorname {sech}^{5}{\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(b*x+a)**2*sech(b*x+a)**5,x)

[Out]

Integral(csch(a + b*x)**2*sech(a + b*x)**5, x)

________________________________________________________________________________________