3.225 \(\int \cosh (x) \cosh (2 x) \, dx\)

Optimal. Leaf size=15 \[ \frac {\sinh (x)}{2}+\frac {1}{6} \sinh (3 x) \]

[Out]

1/2*sinh(x)+1/6*sinh(3*x)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4283} \[ \frac {\sinh (x)}{2}+\frac {1}{6} \sinh (3 x) \]

Antiderivative was successfully verified.

[In]

Int[Cosh[x]*Cosh[2*x],x]

[Out]

Sinh[x]/2 + Sinh[3*x]/6

Rule 4283

Int[cos[(a_.) + (b_.)*(x_)]*cos[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[a - c + (b - d)*x]/(2*(b - d)), x]
+ Simp[Sin[a + c + (b + d)*x]/(2*(b + d)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0]

Rubi steps

\begin {align*} \int \cosh (x) \cosh (2 x) \, dx &=\frac {\sinh (x)}{2}+\frac {1}{6} \sinh (3 x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 15, normalized size = 1.00 \[ \frac {\sinh (x)}{2}+\frac {1}{6} \sinh (3 x) \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[x]*Cosh[2*x],x]

[Out]

Sinh[x]/2 + Sinh[3*x]/6

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 17, normalized size = 1.13 \[ \frac {1}{6} \, \sinh \relax (x)^{3} + \frac {1}{2} \, {\left (\cosh \relax (x)^{2} + 1\right )} \sinh \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)*cosh(2*x),x, algorithm="fricas")

[Out]

1/6*sinh(x)^3 + 1/2*(cosh(x)^2 + 1)*sinh(x)

________________________________________________________________________________________

giac [B]  time = 0.13, size = 25, normalized size = 1.67 \[ -\frac {1}{12} \, {\left (3 \, e^{\left (2 \, x\right )} + 1\right )} e^{\left (-3 \, x\right )} + \frac {1}{12} \, e^{\left (3 \, x\right )} + \frac {1}{4} \, e^{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)*cosh(2*x),x, algorithm="giac")

[Out]

-1/12*(3*e^(2*x) + 1)*e^(-3*x) + 1/12*e^(3*x) + 1/4*e^x

________________________________________________________________________________________

maple [A]  time = 0.16, size = 12, normalized size = 0.80 \[ \frac {\sinh \relax (x )}{2}+\frac {\sinh \left (3 x \right )}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)*cosh(2*x),x)

[Out]

1/2*sinh(x)+1/6*sinh(3*x)

________________________________________________________________________________________

maxima [B]  time = 0.34, size = 27, normalized size = 1.80 \[ \frac {1}{12} \, {\left (3 \, e^{\left (-2 \, x\right )} + 1\right )} e^{\left (3 \, x\right )} - \frac {1}{4} \, e^{\left (-x\right )} - \frac {1}{12} \, e^{\left (-3 \, x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)*cosh(2*x),x, algorithm="maxima")

[Out]

1/12*(3*e^(-2*x) + 1)*e^(3*x) - 1/4*e^(-x) - 1/12*e^(-3*x)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 9, normalized size = 0.60 \[ \frac {2\,{\mathrm {sinh}\relax (x)}^3}{3}+\mathrm {sinh}\relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(2*x)*cosh(x),x)

[Out]

sinh(x) + (2*sinh(x)^3)/3

________________________________________________________________________________________

sympy [A]  time = 0.45, size = 20, normalized size = 1.33 \[ - \frac {\sinh {\relax (x )} \cosh {\left (2 x \right )}}{3} + \frac {2 \sinh {\left (2 x \right )} \cosh {\relax (x )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)*cosh(2*x),x)

[Out]

-sinh(x)*cosh(2*x)/3 + 2*sinh(2*x)*cosh(x)/3

________________________________________________________________________________________