3.205 \(\int \sinh (x) \tanh (n x) \, dx\)

Optimal. Leaf size=81 \[ -e^{-x} \, _2F_1\left (1,-\frac {1}{2 n};1-\frac {1}{2 n};-e^{2 n x}\right )-e^x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-e^{2 n x}\right )+\frac {e^{-x}}{2}+\frac {e^x}{2} \]

[Out]

1/2/exp(x)+1/2*exp(x)-hypergeom([1, -1/2/n],[1-1/2/n],-exp(2*n*x))/exp(x)-exp(x)*hypergeom([1, 1/2/n],[1+1/2/n
],-exp(2*n*x))

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {5601, 2194, 2251} \[ -e^{-x} \, _2F_1\left (1,-\frac {1}{2 n};1-\frac {1}{2 n};-e^{2 n x}\right )-e^x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-e^{2 n x}\right )+\frac {e^{-x}}{2}+\frac {e^x}{2} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[x]*Tanh[n*x],x]

[Out]

1/(2*E^x) + E^x/2 - Hypergeometric2F1[1, -1/(2*n), 1 - 1/(2*n), -E^(2*n*x)]/E^x - E^x*Hypergeometric2F1[1, 1/(
2*n), (2 + n^(-1))/2, -E^(2*n*x)]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2251

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp
[(a^p*G^(h*(f + g*x))*Hypergeometric2F1[-p, (g*h*Log[G])/(d*e*Log[F]), (g*h*Log[G])/(d*e*Log[F]) + 1, Simplify
[-((b*F^(e*(c + d*x)))/a)]])/(g*h*Log[G]), x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && (ILtQ[p, 0] ||
 GtQ[a, 0])

Rule 5601

Int[Sinh[(a_.) + (b_.)*(x_)]*Tanh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[-(1/(E^(a + b*x)*2)) + E^(a + b*x)/2 +
 1/(E^(a + b*x)*(1 + E^(2*(c + d*x)))) - E^(a + b*x)/(1 + E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && Ne
Q[b^2 - d^2, 0]

Rubi steps

\begin {align*} \int \sinh (x) \tanh (n x) \, dx &=\int \left (-\frac {e^{-x}}{2}+\frac {e^x}{2}+\frac {e^{-x}}{1+e^{2 n x}}-\frac {e^x}{1+e^{2 n x}}\right ) \, dx\\ &=-\left (\frac {1}{2} \int e^{-x} \, dx\right )+\frac {\int e^x \, dx}{2}+\int \frac {e^{-x}}{1+e^{2 n x}} \, dx-\int \frac {e^x}{1+e^{2 n x}} \, dx\\ &=\frac {e^{-x}}{2}+\frac {e^x}{2}-e^{-x} \, _2F_1\left (1,-\frac {1}{2 n};1-\frac {1}{2 n};-e^{2 n x}\right )-e^x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-e^{2 n x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.18, size = 164, normalized size = 2.02 \[ \frac {1}{2} e^{-2 x} \left (-\frac {e^{2 n x+x} \, _2F_1\left (1,1-\frac {1}{2 n};2-\frac {1}{2 n};-e^{2 n x}\right )}{2 n-1}+\frac {e^{(2 n+3) x} \, _2F_1\left (1,1+\frac {1}{2 n};2+\frac {1}{2 n};-e^{2 n x}\right )}{2 n+1}-e^x \left (\, _2F_1\left (1,-\frac {1}{2 n};1-\frac {1}{2 n};-e^{2 n x}\right )+e^{2 x} \, _2F_1\left (1,\frac {1}{2 n};1+\frac {1}{2 n};-e^{2 n x}\right )\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[x]*Tanh[n*x],x]

[Out]

(-((E^(x + 2*n*x)*Hypergeometric2F1[1, 1 - 1/(2*n), 2 - 1/(2*n), -E^(2*n*x)])/(-1 + 2*n)) + (E^((3 + 2*n)*x)*H
ypergeometric2F1[1, 1 + 1/(2*n), 2 + 1/(2*n), -E^(2*n*x)])/(1 + 2*n) - E^x*(Hypergeometric2F1[1, -1/2*1/n, 1 -
 1/(2*n), -E^(2*n*x)] + E^(2*x)*Hypergeometric2F1[1, 1/(2*n), 1 + 1/(2*n), -E^(2*n*x)]))/(2*E^(2*x))

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sinh \relax (x) \tanh \left (n x\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)*tanh(n*x),x, algorithm="fricas")

[Out]

integral(sinh(x)*tanh(n*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sinh \relax (x) \tanh \left (n x\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)*tanh(n*x),x, algorithm="giac")

[Out]

integrate(sinh(x)*tanh(n*x), x)

________________________________________________________________________________________

maple [F]  time = 0.17, size = 0, normalized size = 0.00 \[ \int \sinh \relax (x ) \tanh \left (n x \right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(x)*tanh(n*x),x)

[Out]

int(sinh(x)*tanh(n*x),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{2} \, {\left (e^{\left (2 \, x\right )} + 1\right )} e^{\left (-x\right )} - \frac {1}{2} \, \int \frac {2 \, {\left (e^{\left (2 \, x\right )} - 1\right )}}{e^{\left (2 \, n x + x\right )} + e^{x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)*tanh(n*x),x, algorithm="maxima")

[Out]

1/2*(e^(2*x) + 1)*e^(-x) - 1/2*integrate(2*(e^(2*x) - 1)/(e^(2*n*x + x) + e^x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \mathrm {tanh}\left (n\,x\right )\,\mathrm {sinh}\relax (x) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(n*x)*sinh(x),x)

[Out]

int(tanh(n*x)*sinh(x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sinh {\relax (x )} \tanh {\left (n x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(x)*tanh(n*x),x)

[Out]

Integral(sinh(x)*tanh(n*x), x)

________________________________________________________________________________________