3.120 \(\int \cosh ^3(a+b x) \text {csch}^{3+n}(a+b x) \, dx\)

Optimal. Leaf size=37 \[ -\frac {\text {csch}^{n+2}(a+b x)}{b (n+2)}-\frac {\text {csch}^n(a+b x)}{b n} \]

[Out]

-csch(b*x+a)^n/b/n-csch(b*x+a)^(2+n)/b/(2+n)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2621, 14} \[ -\frac {\text {csch}^n(a+b x)}{b n}-\frac {\text {csch}^{n+2}(a+b x)}{b (n+2)} \]

Antiderivative was successfully verified.

[In]

Int[Cosh[a + b*x]^3*Csch[a + b*x]^(3 + n),x]

[Out]

-(Csch[a + b*x]^n/(b*n)) - Csch[a + b*x]^(2 + n)/(b*(2 + n))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2621

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(f*a^n)^(-1), Subst
[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Integer
Q[(n + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rubi steps

\begin {align*} \int \cosh ^3(a+b x) \text {csch}^{3+n}(a+b x) \, dx &=\frac {\operatorname {Subst}\left (\int x^{-1+n} \left (-1-x^2\right ) \, dx,x,\text {csch}(a+b x)\right )}{b}\\ &=\frac {\operatorname {Subst}\left (\int \left (-x^{-1+n}-x^{1+n}\right ) \, dx,x,\text {csch}(a+b x)\right )}{b}\\ &=-\frac {\text {csch}^n(a+b x)}{b n}-\frac {\text {csch}^{2+n}(a+b x)}{b (2+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 34, normalized size = 0.92 \[ -\frac {\text {csch}^n(a+b x) \left (n \text {csch}^2(a+b x)+n+2\right )}{b n (n+2)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[a + b*x]^3*Csch[a + b*x]^(3 + n),x]

[Out]

-((Csch[a + b*x]^n*(2 + n + n*Csch[a + b*x]^2))/(b*n*(2 + n)))

________________________________________________________________________________________

fricas [B]  time = 0.45, size = 216, normalized size = 5.84 \[ \frac {{\left ({\left (n + 2\right )} \cosh \left (b x + a\right )^{2} + {\left (n + 2\right )} \sinh \left (b x + a\right )^{2} + n - 2\right )} \cosh \left (n \log \left (\frac {2 \, {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}}{\cosh \left (b x + a\right )^{2} + 2 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + \sinh \left (b x + a\right )^{2} - 1}\right )\right ) + {\left ({\left (n + 2\right )} \cosh \left (b x + a\right )^{2} + {\left (n + 2\right )} \sinh \left (b x + a\right )^{2} + n - 2\right )} \sinh \left (n \log \left (\frac {2 \, {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}}{\cosh \left (b x + a\right )^{2} + 2 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + \sinh \left (b x + a\right )^{2} - 1}\right )\right )}{b n^{2} - {\left (b n^{2} + 2 \, b n\right )} \cosh \left (b x + a\right )^{2} - {\left (b n^{2} + 2 \, b n\right )} \sinh \left (b x + a\right )^{2} + 2 \, b n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(b*x+a)^3*csch(b*x+a)^n,x, algorithm="fricas")

[Out]

(((n + 2)*cosh(b*x + a)^2 + (n + 2)*sinh(b*x + a)^2 + n - 2)*cosh(n*log(2*(cosh(b*x + a) + sinh(b*x + a))/(cos
h(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1))) + ((n + 2)*cosh(b*x + a)^2 + (n + 2)*sin
h(b*x + a)^2 + n - 2)*sinh(n*log(2*(cosh(b*x + a) + sinh(b*x + a))/(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x
 + a) + sinh(b*x + a)^2 - 1))))/(b*n^2 - (b*n^2 + 2*b*n)*cosh(b*x + a)^2 - (b*n^2 + 2*b*n)*sinh(b*x + a)^2 + 2
*b*n)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {csch}\left (b x + a\right )^{n} \coth \left (b x + a\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(b*x+a)^3*csch(b*x+a)^n,x, algorithm="giac")

[Out]

integrate(csch(b*x + a)^n*coth(b*x + a)^3, x)

________________________________________________________________________________________

maple [C]  time = 0.50, size = 499, normalized size = 13.49 \[ -\frac {\left (n \,{\mathrm e}^{4 b x +4 a}+2 \,{\mathrm e}^{4 b x +4 a}+2 \,{\mathrm e}^{2 b x +2 a} n -4 \,{\mathrm e}^{2 b x +2 a}+n +2\right ) {\mathrm e}^{\frac {n \left (-i \mathrm {csgn}\left (\frac {i}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right )^{3} \pi +i \mathrm {csgn}\left (\frac {i}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{1+{\mathrm e}^{b x +a}}\right ) \pi +i \mathrm {csgn}\left (\frac {i}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{b x +a}-1}\right ) \pi -i \mathrm {csgn}\left (\frac {i}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right ) \mathrm {csgn}\left (\frac {i}{1+{\mathrm e}^{b x +a}}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{b x +a}-1}\right ) \pi +i \mathrm {csgn}\left (\frac {i}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{b x +a}}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right )^{2} \pi -i \mathrm {csgn}\left (\frac {i}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{b x +a}}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right ) \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) \pi -i \mathrm {csgn}\left (\frac {i {\mathrm e}^{b x +a}}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right )^{3} \pi +i \mathrm {csgn}\left (\frac {i {\mathrm e}^{b x +a}}{\left (1+{\mathrm e}^{b x +a}\right ) \left ({\mathrm e}^{b x +a}-1\right )}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) \pi +2 \ln \left ({\mathrm e}^{b x +a}\right )-2 \ln \left ({\mathrm e}^{b x +a}-1\right )+2 \ln \relax (2)-2 \ln \left (1+{\mathrm e}^{b x +a}\right )\right )}{2}}}{b n \left (n +2\right ) \left ({\mathrm e}^{2 b x +2 a}-1\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(b*x+a)^3*csch(b*x+a)^n,x)

[Out]

-(n*exp(4*b*x+4*a)+2*exp(4*b*x+4*a)+2*exp(2*b*x+2*a)*n-4*exp(2*b*x+2*a)+n+2)/b/n/(n+2)/(exp(2*b*x+2*a)-1)^2*ex
p(1/2*n*(-I*csgn(I/(1+exp(b*x+a))/(exp(b*x+a)-1))^3*Pi+I*csgn(I/(1+exp(b*x+a))/(exp(b*x+a)-1))^2*csgn(I/(1+exp
(b*x+a)))*Pi+I*csgn(I/(1+exp(b*x+a))/(exp(b*x+a)-1))^2*csgn(I/(exp(b*x+a)-1))*Pi-I*csgn(I/(1+exp(b*x+a))/(exp(
b*x+a)-1))*csgn(I/(1+exp(b*x+a)))*csgn(I/(exp(b*x+a)-1))*Pi+I*csgn(I/(1+exp(b*x+a))/(exp(b*x+a)-1))*csgn(I*exp
(b*x+a)/(1+exp(b*x+a))/(exp(b*x+a)-1))^2*Pi-I*csgn(I/(1+exp(b*x+a))/(exp(b*x+a)-1))*csgn(I*exp(b*x+a)/(1+exp(b
*x+a))/(exp(b*x+a)-1))*csgn(I*exp(b*x+a))*Pi-I*csgn(I*exp(b*x+a)/(1+exp(b*x+a))/(exp(b*x+a)-1))^3*Pi+I*csgn(I*
exp(b*x+a)/(1+exp(b*x+a))/(exp(b*x+a)-1))^2*csgn(I*exp(b*x+a))*Pi+2*ln(exp(b*x+a))-2*ln(exp(b*x+a)-1)+2*ln(2)-
2*ln(1+exp(b*x+a))))

________________________________________________________________________________________

maxima [B]  time = 0.50, size = 414, normalized size = 11.19 \[ -\frac {2^{n} n e^{\left (-{\left (b x + a\right )} n - n \log \left (e^{\left (-b x - a\right )} + 1\right ) - n \log \left (-e^{\left (-b x - a\right )} + 1\right )\right )}}{{\left (n^{2} - 2 \, {\left (n^{2} + 2 \, n\right )} e^{\left (-2 \, b x - 2 \, a\right )} + {\left (n^{2} + 2 \, n\right )} e^{\left (-4 \, b x - 4 \, a\right )} + 2 \, n\right )} b} - \frac {{\left (2^{n + 1} n - 2^{n + 2}\right )} e^{\left (-{\left (b x + a\right )} n - 2 \, b x - n \log \left (e^{\left (-b x - a\right )} + 1\right ) - n \log \left (-e^{\left (-b x - a\right )} + 1\right ) - 2 \, a\right )}}{{\left (n^{2} - 2 \, {\left (n^{2} + 2 \, n\right )} e^{\left (-2 \, b x - 2 \, a\right )} + {\left (n^{2} + 2 \, n\right )} e^{\left (-4 \, b x - 4 \, a\right )} + 2 \, n\right )} b} - \frac {{\left (2^{n} n + 2^{n + 1}\right )} e^{\left (-{\left (b x + a\right )} n - 4 \, b x - n \log \left (e^{\left (-b x - a\right )} + 1\right ) - n \log \left (-e^{\left (-b x - a\right )} + 1\right ) - 4 \, a\right )}}{{\left (n^{2} - 2 \, {\left (n^{2} + 2 \, n\right )} e^{\left (-2 \, b x - 2 \, a\right )} + {\left (n^{2} + 2 \, n\right )} e^{\left (-4 \, b x - 4 \, a\right )} + 2 \, n\right )} b} - \frac {2^{n + 1} e^{\left (-{\left (b x + a\right )} n - n \log \left (e^{\left (-b x - a\right )} + 1\right ) - n \log \left (-e^{\left (-b x - a\right )} + 1\right )\right )}}{{\left (n^{2} - 2 \, {\left (n^{2} + 2 \, n\right )} e^{\left (-2 \, b x - 2 \, a\right )} + {\left (n^{2} + 2 \, n\right )} e^{\left (-4 \, b x - 4 \, a\right )} + 2 \, n\right )} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(b*x+a)^3*csch(b*x+a)^n,x, algorithm="maxima")

[Out]

-2^n*n*e^(-(b*x + a)*n - n*log(e^(-b*x - a) + 1) - n*log(-e^(-b*x - a) + 1))/((n^2 - 2*(n^2 + 2*n)*e^(-2*b*x -
 2*a) + (n^2 + 2*n)*e^(-4*b*x - 4*a) + 2*n)*b) - (2^(n + 1)*n - 2^(n + 2))*e^(-(b*x + a)*n - 2*b*x - n*log(e^(
-b*x - a) + 1) - n*log(-e^(-b*x - a) + 1) - 2*a)/((n^2 - 2*(n^2 + 2*n)*e^(-2*b*x - 2*a) + (n^2 + 2*n)*e^(-4*b*
x - 4*a) + 2*n)*b) - (2^n*n + 2^(n + 1))*e^(-(b*x + a)*n - 4*b*x - n*log(e^(-b*x - a) + 1) - n*log(-e^(-b*x -
a) + 1) - 4*a)/((n^2 - 2*(n^2 + 2*n)*e^(-2*b*x - 2*a) + (n^2 + 2*n)*e^(-4*b*x - 4*a) + 2*n)*b) - 2^(n + 1)*e^(
-(b*x + a)*n - n*log(e^(-b*x - a) + 1) - n*log(-e^(-b*x - a) + 1))/((n^2 - 2*(n^2 + 2*n)*e^(-2*b*x - 2*a) + (n
^2 + 2*n)*e^(-4*b*x - 4*a) + 2*n)*b)

________________________________________________________________________________________

mupad [B]  time = 1.55, size = 100, normalized size = 2.70 \[ -\frac {{\left (\frac {1}{\frac {{\mathrm {e}}^{a+b\,x}}{2}-\frac {{\mathrm {e}}^{-a-b\,x}}{2}}\right )}^n\,\left (\frac {1}{b\,n}+\frac {{\mathrm {e}}^{4\,a+4\,b\,x}}{b\,n}+\frac {{\mathrm {e}}^{2\,a+2\,b\,x}\,\left (2\,n-4\right )}{b\,n\,\left (n+2\right )}\right )}{{\mathrm {e}}^{4\,a+4\,b\,x}-2\,{\mathrm {e}}^{2\,a+2\,b\,x}+1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(a + b*x)^3*(1/sinh(a + b*x))^n,x)

[Out]

-((1/(exp(a + b*x)/2 - exp(- a - b*x)/2))^n*(1/(b*n) + exp(4*a + 4*b*x)/(b*n) + (exp(2*a + 2*b*x)*(2*n - 4))/(
b*n*(n + 2))))/(exp(4*a + 4*b*x) - 2*exp(2*a + 2*b*x) + 1)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \coth ^{3}{\left (a + b x \right )} \operatorname {csch}^{n}{\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(b*x+a)**3*csch(b*x+a)**n,x)

[Out]

Integral(coth(a + b*x)**3*csch(a + b*x)**n, x)

________________________________________________________________________________________