3.101 \(\int \cosh (a+b x) \coth (a+b x) \, dx\)

Optimal. Leaf size=23 \[ \frac {\cosh (a+b x)}{b}-\frac {\tanh ^{-1}(\cosh (a+b x))}{b} \]

[Out]

-arctanh(cosh(b*x+a))/b+cosh(b*x+a)/b

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2592, 321, 206} \[ \frac {\cosh (a+b x)}{b}-\frac {\tanh ^{-1}(\cosh (a+b x))}{b} \]

Antiderivative was successfully verified.

[In]

Int[Cosh[a + b*x]*Coth[a + b*x],x]

[Out]

-(ArcTanh[Cosh[a + b*x]]/b) + Cosh[a + b*x]/b

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2592

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, (a*Sin[e + f*x])/ff
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rubi steps

\begin {align*} \int \cosh (a+b x) \coth (a+b x) \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,\cosh (a+b x)\right )}{b}\\ &=\frac {\cosh (a+b x)}{b}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cosh (a+b x)\right )}{b}\\ &=-\frac {\tanh ^{-1}(\cosh (a+b x))}{b}+\frac {\cosh (a+b x)}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 26, normalized size = 1.13 \[ \frac {\cosh (a+b x)}{b}+\frac {\log \left (\tanh \left (\frac {1}{2} (a+b x)\right )\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[a + b*x]*Coth[a + b*x],x]

[Out]

Cosh[a + b*x]/b + Log[Tanh[(a + b*x)/2]]/b

________________________________________________________________________________________

fricas [B]  time = 0.51, size = 113, normalized size = 4.91 \[ \frac {\cosh \left (b x + a\right )^{2} - 2 \, {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )} \log \left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right ) + 1\right ) + 2 \, {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )} \log \left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right ) - 1\right ) + 2 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + \sinh \left (b x + a\right )^{2} + 1}{2 \, {\left (b \cosh \left (b x + a\right ) + b \sinh \left (b x + a\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*coth(b*x+a),x, algorithm="fricas")

[Out]

1/2*(cosh(b*x + a)^2 - 2*(cosh(b*x + a) + sinh(b*x + a))*log(cosh(b*x + a) + sinh(b*x + a) + 1) + 2*(cosh(b*x
+ a) + sinh(b*x + a))*log(cosh(b*x + a) + sinh(b*x + a) - 1) + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2
 + 1)/(b*cosh(b*x + a) + b*sinh(b*x + a))

________________________________________________________________________________________

giac [A]  time = 0.14, size = 44, normalized size = 1.91 \[ \frac {e^{\left (b x + a\right )} + e^{\left (-b x - a\right )} - 2 \, \log \left (e^{\left (b x + a\right )} + 1\right ) + 2 \, \log \left ({\left | e^{\left (b x + a\right )} - 1 \right |}\right )}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*coth(b*x+a),x, algorithm="giac")

[Out]

1/2*(e^(b*x + a) + e^(-b*x - a) - 2*log(e^(b*x + a) + 1) + 2*log(abs(e^(b*x + a) - 1)))/b

________________________________________________________________________________________

maple [A]  time = 0.11, size = 21, normalized size = 0.91 \[ \frac {\cosh \left (b x +a \right )-2 \arctanh \left ({\mathrm e}^{b x +a}\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(b*x+a)*coth(b*x+a),x)

[Out]

1/b*(cosh(b*x+a)-2*arctanh(exp(b*x+a)))

________________________________________________________________________________________

maxima [B]  time = 0.33, size = 59, normalized size = 2.57 \[ \frac {e^{\left (b x + a\right )}}{2 \, b} + \frac {e^{\left (-b x - a\right )}}{2 \, b} - \frac {\log \left (e^{\left (-b x - a\right )} + 1\right )}{b} + \frac {\log \left (e^{\left (-b x - a\right )} - 1\right )}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*coth(b*x+a),x, algorithm="maxima")

[Out]

1/2*e^(b*x + a)/b + 1/2*e^(-b*x - a)/b - log(e^(-b*x - a) + 1)/b + log(e^(-b*x - a) - 1)/b

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 53, normalized size = 2.30 \[ \frac {{\mathrm {e}}^{a+b\,x}}{2\,b}-\frac {2\,\mathrm {atan}\left (\frac {{\mathrm {e}}^{b\,x}\,{\mathrm {e}}^a\,\sqrt {-b^2}}{b}\right )}{\sqrt {-b^2}}+\frac {{\mathrm {e}}^{-a-b\,x}}{2\,b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(a + b*x)*coth(a + b*x),x)

[Out]

exp(a + b*x)/(2*b) - (2*atan((exp(b*x)*exp(a)*(-b^2)^(1/2))/b))/(-b^2)^(1/2) + exp(- a - b*x)/(2*b)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \cosh {\left (a + b x \right )} \coth {\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*coth(b*x+a),x)

[Out]

Integral(cosh(a + b*x)*coth(a + b*x), x)

________________________________________________________________________________________