3.1006 \(\int e^{n \sinh (\frac {a}{2}+\frac {b x}{2})} \sinh (a+b x) \, dx\)

Optimal. Leaf size=64 \[ \frac {4 \sinh \left (\frac {a}{2}+\frac {b x}{2}\right ) e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}}{b n}-\frac {4 e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}}{b n^2} \]

[Out]

-4*exp(n*sinh(1/2*a+1/2*b*x))/b/n^2+4*exp(n*sinh(1/2*a+1/2*b*x))*sinh(1/2*a+1/2*b*x)/b/n

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 2176, 2194} \[ \frac {4 \sinh \left (\frac {a}{2}+\frac {b x}{2}\right ) e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}}{b n}-\frac {4 e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}}{b n^2} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*Sinh[a/2 + (b*x)/2])*Sinh[a + b*x],x]

[Out]

(-4*E^(n*Sinh[a/2 + (b*x)/2]))/(b*n^2) + (4*E^(n*Sinh[a/2 + (b*x)/2])*Sinh[a/2 + (b*x)/2])/(b*n)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {align*} \int e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )} \sinh (a+b x) \, dx &=\frac {2 \operatorname {Subst}\left (\int 2 e^{n x} x \, dx,x,\sinh \left (\frac {a}{2}+\frac {b x}{2}\right )\right )}{b}\\ &=\frac {4 \operatorname {Subst}\left (\int e^{n x} x \, dx,x,\sinh \left (\frac {a}{2}+\frac {b x}{2}\right )\right )}{b}\\ &=\frac {4 e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )} \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}{b n}-\frac {4 \operatorname {Subst}\left (\int e^{n x} \, dx,x,\sinh \left (\frac {a}{2}+\frac {b x}{2}\right )\right )}{b n}\\ &=-\frac {4 e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}}{b n^2}+\frac {4 e^{n \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )} \sinh \left (\frac {a}{2}+\frac {b x}{2}\right )}{b n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 36, normalized size = 0.56 \[ \frac {4 e^{n \sinh \left (\frac {1}{2} (a+b x)\right )} \left (n \sinh \left (\frac {1}{2} (a+b x)\right )-1\right )}{b n^2} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*Sinh[a/2 + (b*x)/2])*Sinh[a + b*x],x]

[Out]

(4*E^(n*Sinh[(a + b*x)/2])*(-1 + n*Sinh[(a + b*x)/2]))/(b*n^2)

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 91, normalized size = 1.42 \[ \frac {4 \, {\left ({\left (n \sinh \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right ) - 1\right )} \cosh \left (n \sinh \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )\right ) + {\left (n \sinh \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right ) - 1\right )} \sinh \left (n \sinh \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )\right )\right )}}{b n^{2} \cosh \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - b n^{2} \sinh \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(1/2*a+1/2*b*x))*sinh(b*x+a),x, algorithm="fricas")

[Out]

4*((n*sinh(1/2*b*x + 1/2*a) - 1)*cosh(n*sinh(1/2*b*x + 1/2*a)) + (n*sinh(1/2*b*x + 1/2*a) - 1)*sinh(n*sinh(1/2
*b*x + 1/2*a)))/(b*n^2*cosh(1/2*b*x + 1/2*a)^2 - b*n^2*sinh(1/2*b*x + 1/2*a)^2)

________________________________________________________________________________________

giac [B]  time = 0.19, size = 255, normalized size = 3.98 \[ \frac {2 \, {\left (n e^{\left (b x + \frac {1}{4} \, {\left (2 \, b x e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} + n e^{\left (b x + a\right )} - n\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} - \frac {1}{4} \, {\left (2 \, b x e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} - n e^{\left (b x + a\right )} + n\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} + a\right )} - n e^{\left (\frac {1}{4} \, {\left (2 \, b x e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} + n e^{\left (b x + a\right )} - n\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} - \frac {1}{4} \, {\left (2 \, b x e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} - n e^{\left (b x + a\right )} + n\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )}\right )} - 2 \, e^{\left (\frac {1}{2} \, b x + \frac {1}{4} \, {\left (2 \, b x e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} + n e^{\left (b x + a\right )} - n\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} - \frac {1}{4} \, {\left (2 \, b x e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} - n e^{\left (b x + a\right )} + n\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} + \frac {1}{2} \, a\right )}\right )} e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )}}{b n^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(1/2*a+1/2*b*x))*sinh(b*x+a),x, algorithm="giac")

[Out]

2*(n*e^(b*x + 1/4*(2*b*x*e^(1/2*b*x + 1/2*a) + n*e^(b*x + a) - n)*e^(-1/2*b*x - 1/2*a) - 1/4*(2*b*x*e^(1/2*b*x
 + 1/2*a) - n*e^(b*x + a) + n)*e^(-1/2*b*x - 1/2*a) + a) - n*e^(1/4*(2*b*x*e^(1/2*b*x + 1/2*a) + n*e^(b*x + a)
 - n)*e^(-1/2*b*x - 1/2*a) - 1/4*(2*b*x*e^(1/2*b*x + 1/2*a) - n*e^(b*x + a) + n)*e^(-1/2*b*x - 1/2*a)) - 2*e^(
1/2*b*x + 1/4*(2*b*x*e^(1/2*b*x + 1/2*a) + n*e^(b*x + a) - n)*e^(-1/2*b*x - 1/2*a) - 1/4*(2*b*x*e^(1/2*b*x + 1
/2*a) - n*e^(b*x + a) + n)*e^(-1/2*b*x - 1/2*a) + 1/2*a))*e^(-1/2*b*x - 1/2*a)/(b*n^2)

________________________________________________________________________________________

maple [A]  time = 0.34, size = 65, normalized size = 1.02 \[ \frac {2 \left (n \,{\mathrm e}^{b x +a}-n -2 \,{\mathrm e}^{\frac {b x}{2}+\frac {a}{2}}\right ) {\mathrm e}^{-\frac {b x}{2}-\frac {a}{2}+\frac {n \,{\mathrm e}^{\frac {b x}{2}+\frac {a}{2}}}{2}-\frac {n \,{\mathrm e}^{-\frac {b x}{2}-\frac {a}{2}}}{2}}}{n^{2} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*sinh(1/2*b*x+1/2*a))*sinh(b*x+a),x)

[Out]

2/n^2/b*(n*exp(b*x+a)-n-2*exp(1/2*b*x+1/2*a))*exp(-1/2*b*x-1/2*a+1/2*n*exp(1/2*b*x+1/2*a)-1/2*n*exp(-1/2*b*x-1
/2*a))

________________________________________________________________________________________

maxima [B]  time = 0.40, size = 117, normalized size = 1.83 \[ \frac {2 \, e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, n e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} - \frac {1}{2} \, n e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} + \frac {1}{2} \, a\right )}}{b n} - \frac {2 \, e^{\left (-\frac {1}{2} \, b x + \frac {1}{2} \, n e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} - \frac {1}{2} \, n e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )} - \frac {1}{2} \, a\right )}}{b n} - \frac {4 \, e^{\left (\frac {1}{2} \, n e^{\left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )} - \frac {1}{2} \, n e^{\left (-\frac {1}{2} \, b x - \frac {1}{2} \, a\right )}\right )}}{b n^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(1/2*a+1/2*b*x))*sinh(b*x+a),x, algorithm="maxima")

[Out]

2*e^(1/2*b*x + 1/2*n*e^(1/2*b*x + 1/2*a) - 1/2*n*e^(-1/2*b*x - 1/2*a) + 1/2*a)/(b*n) - 2*e^(-1/2*b*x + 1/2*n*e
^(1/2*b*x + 1/2*a) - 1/2*n*e^(-1/2*b*x - 1/2*a) - 1/2*a)/(b*n) - 4*e^(1/2*n*e^(1/2*b*x + 1/2*a) - 1/2*n*e^(-1/
2*b*x - 1/2*a))/(b*n^2)

________________________________________________________________________________________

mupad [B]  time = 1.79, size = 127, normalized size = 1.98 \[ \frac {2\,{\mathrm {e}}^{-\frac {a}{2}}\,{\mathrm {e}}^{b\,x}\,{\mathrm {e}}^{-\frac {b\,x}{2}}\,{\mathrm {e}}^a\,{\mathrm {e}}^{-\frac {n\,{\mathrm {e}}^{-\frac {a}{2}}\,{\mathrm {e}}^{-\frac {b\,x}{2}}}{2}}\,{\mathrm {e}}^{\frac {n\,{\mathrm {e}}^{a/2}\,{\mathrm {e}}^{\frac {b\,x}{2}}}{2}}}{b\,n}-\frac {2\,{\mathrm {e}}^{-\frac {a}{2}}\,{\mathrm {e}}^{-\frac {b\,x}{2}}\,{\mathrm {e}}^{-\frac {n\,{\mathrm {e}}^{-\frac {a}{2}}\,{\mathrm {e}}^{-\frac {b\,x}{2}}}{2}}\,{\mathrm {e}}^{\frac {n\,{\mathrm {e}}^{a/2}\,{\mathrm {e}}^{\frac {b\,x}{2}}}{2}}}{b\,n}-\frac {4\,{\mathrm {e}}^{-\frac {n\,{\mathrm {e}}^{-\frac {a}{2}}\,{\mathrm {e}}^{-\frac {b\,x}{2}}}{2}}\,{\mathrm {e}}^{\frac {n\,{\mathrm {e}}^{a/2}\,{\mathrm {e}}^{\frac {b\,x}{2}}}{2}}}{b\,n^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*sinh(a/2 + (b*x)/2))*sinh(a + b*x),x)

[Out]

(2*exp(-a/2)*exp(b*x)*exp(-(b*x)/2)*exp(a)*exp(-(n*exp(-a/2)*exp(-(b*x)/2))/2)*exp((n*exp(a/2)*exp((b*x)/2))/2
))/(b*n) - (2*exp(-a/2)*exp(-(b*x)/2)*exp(-(n*exp(-a/2)*exp(-(b*x)/2))/2)*exp((n*exp(a/2)*exp((b*x)/2))/2))/(b
*n) - (4*exp(-(n*exp(-a/2)*exp(-(b*x)/2))/2)*exp((n*exp(a/2)*exp((b*x)/2))/2))/(b*n^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int e^{n \sinh {\left (\frac {a}{2} + \frac {b x}{2} \right )}} \sinh {\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(1/2*a+1/2*b*x))*sinh(b*x+a),x)

[Out]

Integral(exp(n*sinh(a/2 + b*x/2))*sinh(a + b*x), x)

________________________________________________________________________________________