3.139 \(\int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^2} \, dx\)

Optimal. Leaf size=41 \[ -\frac {1}{2} c^2 x \sqrt {1-\frac {1}{c^4 x^4}} \csc ^{-1}\left (c^2 x^2\right ) \sqrt {\text {csch}(2 \log (c x))} \]

[Out]

-1/2*c^2*x*arccsc(c^2*x^2)*(1-1/c^4/x^4)^(1/2)*csch(2*ln(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5552, 5550, 335, 275, 216} \[ -\frac {1}{2} c^2 x \sqrt {1-\frac {1}{c^4 x^4}} \csc ^{-1}\left (c^2 x^2\right ) \sqrt {\text {csch}(2 \log (c x))} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Csch[2*Log[c*x]]]/x^2,x]

[Out]

-(c^2*Sqrt[1 - 1/(c^4*x^4)]*x*ArcCsc[c^2*x^2]*Sqrt[Csch[2*Log[c*x]]])/2

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 5550

Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(Csch[d*(a + b*Log[x])]^p*
(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)/x^(-(b*d*p)), Int[(e*x)^m/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p), x], x]
 /; FreeQ[{a, b, d, e, m, p}, x] &&  !IntegerQ[p]

Rule 5552

Int[Csch[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)), Subst[Int[x^((m + 1)/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[
{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])

Rubi steps

\begin {align*} \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^2} \, dx &=c \operatorname {Subst}\left (\int \frac {\sqrt {\text {csch}(2 \log (x))}}{x^2} \, dx,x,c x\right )\\ &=\left (c^2 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {1}{x^4}} x^3} \, dx,x,c x\right )\\ &=-\left (\left (c^2 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x^4}} \, dx,x,\frac {1}{c x}\right )\right )\\ &=-\left (\frac {1}{2} \left (c^2 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,\frac {1}{c^2 x^2}\right )\right )\\ &=-\frac {1}{2} c^2 \sqrt {1-\frac {1}{c^4 x^4}} x \csc ^{-1}\left (c^2 x^2\right ) \sqrt {\text {csch}(2 \log (c x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 54, normalized size = 1.32 \[ \frac {\sqrt {c^4 x^4-1} \sqrt {\frac {c^2 x^2}{2 c^4 x^4-2}} \tan ^{-1}\left (\sqrt {c^4 x^4-1}\right )}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Csch[2*Log[c*x]]]/x^2,x]

[Out]

(Sqrt[-1 + c^4*x^4]*Sqrt[(c^2*x^2)/(-2 + 2*c^4*x^4)]*ArcTan[Sqrt[-1 + c^4*x^4]])/x

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 43, normalized size = 1.05 \[ \frac {1}{2} \, \sqrt {2} c \arctan \left (\frac {{\left (c^{4} x^{4} - 1\right )} \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4} - 1}}}{c x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2*log(c*x))^(1/2)/x^2,x, algorithm="fricas")

[Out]

1/2*sqrt(2)*c*arctan((c^4*x^4 - 1)*sqrt(c^2*x^2/(c^4*x^4 - 1))/(c*x))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2*log(c*x))^(1/2)/x^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [F]  time = 0.14, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\mathrm {csch}\left (2 \ln \left (c x \right )\right )}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(2*ln(c*x))^(1/2)/x^2,x)

[Out]

int(csch(2*ln(c*x))^(1/2)/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\operatorname {csch}\left (2 \, \log \left (c x\right )\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2*log(c*x))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(csch(2*log(c*x)))/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {\frac {1}{\mathrm {sinh}\left (2\,\ln \left (c\,x\right )\right )}}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/sinh(2*log(c*x)))^(1/2)/x^2,x)

[Out]

int((1/sinh(2*log(c*x)))^(1/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\operatorname {csch}{\left (2 \log {\left (c x \right )} \right )}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(2*ln(c*x))**(1/2)/x**2,x)

[Out]

Integral(sqrt(csch(2*log(c*x)))/x**2, x)

________________________________________________________________________________________