3.200 \(\int \frac {1}{x \text {sech}^{\frac {3}{2}}(a+b \log (c x^n))} \, dx\)

Optimal. Leaf size=97 \[ \frac {2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}-\frac {2 i \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{3 b n} \]

[Out]

2/3*sinh(a+b*ln(c*x^n))/b/n/sech(a+b*ln(c*x^n))^(1/2)-2/3*I*(cosh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/cosh(1/2*a+1
/2*b*ln(c*x^n))*EllipticF(I*sinh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))*cosh(a+b*ln(c*x^n))^(1/2)*sech(a+b*ln(c*x^n))
^(1/2)/b/n

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {3769, 3771, 2641} \[ \frac {2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}-\frac {2 i \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{3 b n} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sech[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(((-2*I)/3)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2]*Sqrt[Sech[a + b*Log[c*x^n]]])/
(b*n) + (2*Sinh[a + b*Log[c*x^n]])/(3*b*n*Sqrt[Sech[a + b*Log[c*x^n]]])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{x \text {sech}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\text {sech}^{\frac {3}{2}}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}+\frac {\operatorname {Subst}\left (\int \sqrt {\text {sech}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}+\frac {\left (\sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {\cosh (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=-\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{3 b n}+\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 76, normalized size = 0.78 \[ \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \left (\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )-2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right )\right )}{3 b n} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sech[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(Sqrt[Sech[a + b*Log[c*x^n]]]*((-2*I)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2] + Si
nh[2*(a + b*Log[c*x^n])]))/(3*b*n)

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{x \operatorname {sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")

[Out]

integral(1/(x*sech(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \operatorname {sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*log(c*x^n))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(x*sech(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.68, size = 237, normalized size = 2.44 \[ \frac {2 \sqrt {\left (2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-1\right ) \left (\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}\, \left (4 \left (\cosh ^{5}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-6 \left (\cosh ^{3}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+\sqrt {-\left (\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}\, \sqrt {-2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+1}\, \EllipticF \left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )+2 \cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}{3 n \sqrt {2 \left (\sinh ^{4}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-1}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/sech(a+b*ln(c*x^n))^(3/2),x)

[Out]

2/3/n*((2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)*sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(4*cosh(1/2*a+1/2*b*ln(c*x^n))
^5-6*cosh(1/2*a+1/2*b*ln(c*x^n))^3+(-sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-2*cosh(1/2*a+1/2*b*ln(c*x^n))^2+1)
^(1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))+2*cosh(1/2*a+1/2*b*ln(c*x^n)))/(2*sinh(1/2*a+1/2*b*ln(c*
x^n))^4+sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/sinh(1/2*a+1/2*b*ln(c*x^n))/(2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)^(
1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \operatorname {sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(x*sech(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x\,{\left (\frac {1}{\mathrm {cosh}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(1/cosh(a + b*log(c*x^n)))^(3/2)),x)

[Out]

int(1/(x*(1/cosh(a + b*log(c*x^n)))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \operatorname {sech}^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*ln(c*x**n))**(3/2),x)

[Out]

Integral(1/(x*sech(a + b*log(c*x**n))**(3/2)), x)

________________________________________________________________________________________