3.148 \(\int \frac {\tanh ^2(c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=344 \[ \frac {2 \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a^2 d}+\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b^2 d}-\frac {2 \tanh (c+d x)}{a d \sqrt {a+b \text {sech}(c+d x)}}+\frac {2 \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d} \]

[Out]

2*(a-b)*coth(d*x+c)*EllipticE((a+b*sech(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sech(
d*x+c))/(a+b))^(1/2)*(-b*(1+sech(d*x+c))/(a-b))^(1/2)/a/b^2/d+2*coth(d*x+c)*EllipticF((a+b*sech(d*x+c))^(1/2)/
(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sech(d*x+c))/(a+b))^(1/2)*(-b*(1+sech(d*x+c))/(a-b))^(1/2)/
a/b/d+2*coth(d*x+c)*EllipticPi((a+b*sech(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b
*(1-sech(d*x+c))/(a+b))^(1/2)*(-b*(1+sech(d*x+c))/(a-b))^(1/2)/a^2/d-2*tanh(d*x+c)/a/d/(a+b*sech(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.42, antiderivative size = 344, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3894, 4061, 4059, 3921, 3784, 3832, 4004} \[ \frac {2 \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a^2 d}+\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b^2 d}-\frac {2 \tanh (c+d x)}{a d \sqrt {a+b \text {sech}(c+d x)}}+\frac {2 \sqrt {a+b} \coth (c+d x) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (\text {sech}(c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[c + d*x]^2/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*Coth[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]
*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a*b^2*d) + (2*Sqrt[a + b]*Co
th[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*
x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a*b*d) + (2*Sqrt[a + b]*Coth[c + d*x]*EllipticPi[(a +
 b)/a, ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*S
qrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a^2*d) - (2*Tanh[c + d*x])/(a*d*Sqrt[a + b*Sech[c + d*x]])

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3894

Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(-1 + Csc[c + d*x]
^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4059

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A
- C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[
e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]

Rule 4061

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(
(A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(
a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] +
(A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && Int
egerQ[2*m] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tanh ^2(c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx &=-\int \frac {-1+\text {sech}^2(c+d x)}{(a+b \text {sech}(c+d x))^{3/2}} \, dx\\ &=-\frac {2 \tanh (c+d x)}{a d \sqrt {a+b \text {sech}(c+d x)}}+\frac {2 \int \frac {\frac {1}{2} \left (a^2-b^2\right )+\frac {1}{2} \left (a^2-b^2\right ) \text {sech}^2(c+d x)}{\sqrt {a+b \text {sech}(c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac {2 \tanh (c+d x)}{a d \sqrt {a+b \text {sech}(c+d x)}}+\frac {\int \frac {\text {sech}(c+d x) (1+\text {sech}(c+d x))}{\sqrt {a+b \text {sech}(c+d x)}} \, dx}{a}+\frac {2 \int \frac {\frac {1}{2} \left (a^2-b^2\right )-\frac {1}{2} \left (a^2-b^2\right ) \text {sech}(c+d x)}{\sqrt {a+b \text {sech}(c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a b^2 d}-\frac {2 \tanh (c+d x)}{a d \sqrt {a+b \text {sech}(c+d x)}}+\frac {\int \frac {1}{\sqrt {a+b \text {sech}(c+d x)}} \, dx}{a}-\frac {\int \frac {\text {sech}(c+d x)}{\sqrt {a+b \text {sech}(c+d x)}} \, dx}{a}\\ &=\frac {2 (a-b) \sqrt {a+b} \coth (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a b^2 d}+\frac {2 \sqrt {a+b} \coth (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a b d}+\frac {2 \sqrt {a+b} \coth (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \text {sech}(c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\text {sech}(c+d x))}{a+b}} \sqrt {-\frac {b (1+\text {sech}(c+d x))}{a-b}}}{a^2 d}-\frac {2 \tanh (c+d x)}{a d \sqrt {a+b \text {sech}(c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 180.00, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[Tanh[c + d*x]^2/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 9.08, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \operatorname {sech}\left (d x + c\right ) + a} \tanh \left (d x + c\right )^{2}}{b^{2} \operatorname {sech}\left (d x + c\right )^{2} + 2 \, a b \operatorname {sech}\left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sech(d*x + c) + a)*tanh(d*x + c)^2/(b^2*sech(d*x + c)^2 + 2*a*b*sech(d*x + c) + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh \left (d x + c\right )^{2}}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tanh(d*x + c)^2/(b*sech(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.47, size = 0, normalized size = 0.00 \[ \int \frac {\tanh ^{2}\left (d x +c \right )}{\left (a +b \,\mathrm {sech}\left (d x +c \right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x)

[Out]

int(tanh(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh \left (d x + c\right )^{2}}{{\left (b \operatorname {sech}\left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(d*x + c)^2/(b*sech(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\mathrm {tanh}\left (c+d\,x\right )}^2}{{\left (a+\frac {b}{\mathrm {cosh}\left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(c + d*x)^2/(a + b/cosh(c + d*x))^(3/2),x)

[Out]

int(tanh(c + d*x)^2/(a + b/cosh(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh ^{2}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}{\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)**2/(a+b*sech(d*x+c))**(3/2),x)

[Out]

Integral(tanh(c + d*x)**2/(a + b*sech(c + d*x))**(3/2), x)

________________________________________________________________________________________